skip to main content


Title: The 2018 Camp Fire: Meteorological Analysis Using In Situ Observations and Numerical Simulations
The November 2018 Camp Fire quickly became the deadliest and most destructive wildfire in California history. In this case study, we investigate the contribution of meteorological conditions and, in particular, a downslope windstorm that occurred during the 2018 Camp Fire. Dry seasonal conditions prior to ignition led to 100-h fuel moisture contents in the region to reach record low levels. Meteorological observations were primarily made from a number of remote automatic weather stations and a mobile scanning Doppler lidar deployed to the fire on 8 November 2018. Additionally, gridded operational forecast models and high-resolution meteorological simulations were synthesized in the analysis to provide context for the meteorological observations and structure of the downslope windstorm. Results show that this event was associated with mid-level anti-cyclonic Rossby wave breaking likely caused by cold air advection aloft. An inverted surface trough over central California created a pressure gradient which likely enhanced the downslope winds. Sustained surface winds between 3–6 m s−1 were observed with gusts of over 25 m s−1 while winds above the surface were associated with an intermittent low-level jet. The meteorological conditions of the event were well forecasted, and the severity of the fire was not surprising given the fire danger potential for that day. However, use of surface networks alone do not provide adequate observations for understanding downslope windstorm events and their impact on fire spread. Fire management operations may benefit from the use of operational wind profilers to better understand the evolution of downslope windstorms and other fire weather phenomena that are poorly understood and observed.  more » « less
Award ID(s):
1807774
NSF-PAR ID:
10212362
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Atmosphere
Volume:
11
Issue:
1
ISSN:
2073-4433
Page Range / eLocation ID:
47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We analyzed meteorological conditions that occurred during the December 2021 Boulder, Colorado, downslope windstorm. This event is of particular interest due to the ignition and spread of the Marshall Fire, which quickly became the most destructive wildfire in Colorado history. Observations indicated a rapid onset of fast winds with gusts as high as 51 m/s that generally remained confined to the east-facing slopes and foothills of the Rockies, similar to previous Boulder windstorms. After about 12 h, the windstorm shifted into a second, less intense phase. Midtropospheric winds above northwestern Colorado weakened prior to the onset of strong surface winds and the event strength started waning as stronger winds moved back into the area. Forecasts from NOAA high-resolution operational models initialized more than a few hours prior to windstorm onset did not simulate the start time, development rate and/or maximum strength of the windstorm correctly, and day-ahead runs even failed to develop strong downslope windstorms at all. Idealized modeling confirmed that predictability was limited by errors on the synoptic scale affecting the midtropospheric wind conditions representing the Boulder windstorm’s inflow environment. Gust forecasts for this event were critically evaluated. 
    more » « less
  2. Sundowner winds are downslope gusty winds often observed on the southern slopes of the Santa Ynez Mountains (SYM) in coastal Santa Barbara (SB), California. They typically peak near sunset and exhibit characteristics of downslope windstorms through the evening. They are SB’s most critical fire weather in all seasons and represent a major hazard for aviation. The Sundowner Winds Experiment Pilot Study was designed to evaluate vertical profiles of winds, temperature, humidity, and stability leeward of the SYM during a Sundowner event. This was accomplished by launching 3-hourly radiosondes during a significant Sundowner event on 28–29 April 2018. This study showed that winds in the lee of the SYM exhibit complex spatial and temporal patterns. Vertical profiles showed a transition from humid onshore winds from morning to midafternoon to very pronounced offshore winds during the evening after sunset. These winds accompanied mountain waves and a northerly nocturnal lee jet with variable temporal behavior. Around sunset, the jet was characterized by strong wind speeds enhanced by mountain-wave breaking. Winds weakened considerably at 2300 PDT 29 April but enhanced dramatically at 0200 PDT 29 April at much lower elevations. These transitions were accompanied by changes in stability profiles and in the Richardson number. A simulation with the Weather Research and Forecasting (WRF) Model at 1-km grid spacing was examined to evaluate the skill of the model in capturing the observed winds and stability profiles and to assess mesoscale processes associated with this event. These results advanced understanding on Sundowner’s spatiotemporal characteristics and driving mechanisms.

     
    more » « less
  3. The Salton basin is a closed, subsea level basin located in extreme southeastern California. At the center of the basin lies the Salton Sea, the state’s largest inland lake, which is surrounded by a desert landscape characterized by paleo lakebed surfaces, dry washes, alluvial fans, and interdunes. Dust storms are common occurrence in this region. However, despite the regularity of dust outbreaks here, little is known about the meteorological processes responsible for these storms. Here I use observations and output from reanalysis to elucidate the meteorological controls on dust emission events in the Salton basin during 2015–18. Analysis of surface and upper-air observations, satellite data, and reanalysis, suggest that the largest dust storms in the region are associated with an upper-level low centered near the coastline of western Canada, which directs a zonal low-level jet over the region. Flow blocking by a coastal mountain range results in isentropic drawdown of air in the lee of these mountains. Once surface warming at the floor of the Salton basin is sufficient such that the density of the descending air is greater than that of the ambient air at the surface, the downslope windstorm reaches the desert floor and initiates dust emission. This process may also be accompanied by a downwind propagating hydraulic jump. These processes appear to be similar to those responsible for the strongest dust events in the Owens Valley, and may represent the main mechanisms for emission from other closed basins.

     
    more » « less
  4. Abstract

    Strong downslope windstorms can cause extensive property damage and extreme wildfire spread, so their accurate prediction is important. Although some early studies suggested high predictability for downslope windstorms, more recent analyses have found limited predictability for such winds. Nevertheless, there is a theoretical basis for expecting higher downslope wind predictability in cases with a mean-state critical level, and this is supported by one previous effort to forecast actual events. To more thoroughly investigate downslope windstorm predictability, we compare archived simulations from the NCAR ensemble, a 10-member mesoscale ensemble run at 3-km horizontal grid spacing over the entire contiguous United States, to observed events at 15 stations in the western United States susceptible to strong downslope winds. We assess predictability in three contexts: the average ensemble spread, which provides an estimate of potential predictability; a forecast evaluation based upon binary-decision criteria, which is representative of operational hazard warnings; and a probabilistic forecast evaluation using the continuous ranked probability score (CRPS), which is a measure of an ensemble’s ability to generate the proper probability distribution for the events under consideration. We do find better predictive skill for the mean-state critical-level regime in comparison to other downslope windstorm–generating mechanisms. Our downslope windstorm warning performance, calculated using binary-decision criteria from the bias-corrected ensemble forecasts, performed slightly worse for no-critical-level events, and slightly better for critical-level events, than National Weather Service high-wind warnings aggregated over all types of high-wind events throughout the United States and annually averaged for each year between 2008 and 2019.

     
    more » « less
  5. Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions. 
    more » « less