skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration
Abstract We introduce the concept of Biome Awareness Disparity (BAD)—defined as a failure to appreciate the significance of all biomes in conservation and restoration policy—and quantify disparities in (a) attention and interest, (b) action and (c) knowledge among biomes in tropical restoration science, practice and policy.By analysing 50,000 tweets from all Partner Institutions of the UN Decade of Ecosystem Restoration, and 45,000 tweets from the main science and environmental news media world‐wide, we found strong disparities in attention and interest relative to biome extent and diversity. Tweets largely focused on forests, whereas open biomes (such as grasslands, savannas and shrublands) received less attention in relation to their area. In contrast to these differences in attention, there were equivalent likes and retweets between forest versus open biomes, suggesting the disparities may not reflect the views of the general public.Through a literature review, we found that restoration experiments are disproportionately concentrated in rainforests, dry forests and mangroves. More than half of the studies conducted in open biomes reported tree planting as the main restoration action, suggesting inappropriate application of forest‐oriented techniques.Policy implications. We urge scientists, policymakers and land managers to recognise the value of open biomes for protecting biodiversity, securing ecosystem services, mitigating climate change and enhancing human livelihoods. Fixing Biome Awareness Disparity will increase the likelihood of the United Nations Decade on Ecosystem Restoration successfully delivering its promises.  more » « less
Award ID(s):
1931232
PAR ID:
10369330
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
59
Issue:
8
ISSN:
0021-8901
Page Range / eLocation ID:
p. 1967-1975
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We introduce a new “ecosystem‐scale” experiment at the Cedar Creek Ecosystem Science Reserve in central Minnesota, USA to test long‐term ecosystem consequences of tree diversity and composition. The experiment—the largest of its kind in North America—was designed to provide guidance on forest restoration efforts that will advance carbon sequestration goals and contribute to biodiversity conservation and sustainability.The new Forest and Biodiversity (FAB2) experiment uses native tree species in varying levels of species richness, phylogenetic diversity and functional diversity planted in 100 m2and 400 m2plots at 1 m spacing, appropriate for testing long‐term ecosystem consequences. FAB2 was designed and established in conjunction with a prior experiment (FAB1) in which the same set of 12 species was planted in 16 m2plots at 0.5 m spacing. Both are adjacent to the BioDIV prairie‐grassland diversity experiment, enabling comparative investigations of diversity and ecosystem function relationships between experimental grasslands and forests at different planting densities and plot sizes.Within the first 6 years, mortality in 400 m2monoculture plots was higher than in 100 m2plots. The highest mortality occurred inTilia americanaandAcer negundomonocultures, but mortality for both species decreased with increasing plot diversity. These results demonstrate the importance of forest diversity in reducing mortality in some species and point to potential mechanisms, including light and drought stress, that cause tree mortality in vulnerable monocultures. The experiment highlights challenges to maintaining monoculture and low‐diversity treatments in tree mixture experiments of large extent.FAB2 provides a long‐term platform to test the mechanisms and processes that contribute to forest stability and ecosystem productivity in changing environments. Its ecosystem‐scale design, and accompanying R package, are designed to discern species and lineage effects and multiple dimensions of diversity to inform restoration of ecosystem functions and services from forests. It also provides a platform for improving remote sensing approaches, including Uncrewed Aerial Vehicles (UAVs) equipped with LiDAR, multispectral and hyperspectral sensors, to complement ground‐based monitoring. We aim for the experiment to contribute to international efforts to monitor and manage forests in the face of global change. 
    more » « less
  2. Abstract Tropical forests are increasingly threatened by deforestation and degradation, impacting carbon storage, climate regulations and biodiversity. Restoring these ecosystems is crucial for environmental sustainability, yet monitoring these efforts poses significant challenges. Secondary forests are in a constant state of flux, with growth depending on multiple factors.Remote sensing technologies offer cost‐effective, scalable and transferable solutions, advancing forest restoration monitoring towards more accurate, efficient and real‐time data analysis and interpretation. This review provides a comprehensive evaluation of the current state and advancements in remote sensing technologies applied to monitoring tropical forest restoration.Synthesis and applications: This review brings together the state of the art of remote sensing technologies, such as very‐high‐resolution RGB imagery, multi‐ and hyperspectral imaging, lidar, radar and thermal‐infrared technologies and their applicability in monitoring forest restoration. In conclusion, this review emphasizes the potential of remote sensing technologies, coupled with advanced computational techniques, to enhance global efforts towards effective and sustainable forest restoration monitoring. 
    more » « less
  3. Societal Impact StatementForest ecosystems absorb and store about 25% of global carbon dioxide emissions annually and are increasingly shaped by human land use and management. Climate change interacts with land use and forest dynamics to influence observed carbon stocks and the strength of the land carbon sink. We show that climate change effects on modeled forest land carbon stocks are strongest in tropical wildlands that have limited human influence. Global forest carbon stocks and carbon sink strength may decline as climate change and anthropogenic influences intensify, with wildland tropical forests, especially in Amazonia, likely being especially vulnerable. SummaryHuman effects on ecosystems date back thousands of years, and anthropogenic biomes—anthromes—broadly incorporate the effects of human population density and land use on ecosystems. Forests are integral to the global carbon cycle, containing large biomass carbon stocks, yet their responses to land use and climate change are uncertain but critical to informing climate change mitigation strategies, ecosystem management, and Earth system modeling.Using an anthromes perspective and the site locations from the Global Forest Carbon (ForC) Database, we compare intensively used, cultured, and wildland forest lands in tropical and extratropical regions. We summarize recent past (1900‐present) patterns of land use intensification, and we use a feedback analysis of Earth system models from the Coupled Model Intercomparison Project Phase 6 to estimate the sensitivity of forest carbon stocks to CO2and temperature change for different anthromes among regions.Modeled global forest carbon stock responses are positive for CO2increase but neutral to negative for temperature increase. Across anthromes (intensively used, cultured, and wildland forest areas), modeled forest carbon stock responses of temperate and boreal forests are less variable than those of tropical forests. Tropical wildland forest areas appear especially sensitive to CO2and temperature change, with the negative temperature response highlighting the potential vulnerability of the globally significant carbon stock in tropical forests.The net effect of anthropogenic activities—including land‐use intensification and environmental change and their interactions with natural forest dynamics—will shape future forest carbon stock changes. These interactive effects will likely be strongest in tropical wildlands. 
    more » « less
  4. Abstract Rising temperatures, increasing hydroclimate variability and intensifying disturbance regimes increase the risk of rapid ecosystem conversions. We can leverage multi‐proxy records of past ecosystem transformations to understand their causes and ecosystem vulnerability to rapid change.Prior to Euro‐American settlement, northern Indiana was a mosaic of prairie, oak‐dominated forests/woodlands and beech‐dominated hardwood forests. This heterogeneity, combined with well‐documented but poorly understood past beech population declines, make this region ideal for studying the drivers of ecosystem transformations.Here, we present a new record from Story Lake, IN, with proxies for vegetation composition (pollen), fire (charcoal) and beech intrinsic water use efficiency (δ13C of beech pollen; δ13Cbeech). Multiple proxies from the same core enable clear establishment of lead–lag relationships. Additionally, δ13Cbeechenables direct comparisons between beech population abundance and physiological responses to changing environments. We compare Story Lake to a nearby lake‐level reconstruction and to pollen records from nearby Pretty and Appleman Lakes and the distal Spicer Lake, to test hypotheses about synchrony and the spatial scale of governing processes.The 11.7 ka sediment record from Story Lake indicates multiple conversions between beech‐hardwood forest and oak forest/woodland. Beech pollen abundances rapidly increased between 7.5 and 7.1 ka, while oak declined. Oak abundances increased after 4.6 ka and remained high until 2.8 ka, indicating replacement of mesic forests by oak forest/woodland. At 2.8 ka, beech abundances rapidly increased, indicating mesic forest reestablishment. Beech and oak abundances correlate with charcoal accumulation rates but beech abundance is not correlated with δ13Cbeech.Fluctuations in beech abundances are synchronous among Story, Appleman and Pretty Lakes, but asynchronous between Story and Spicer Lakes, suggesting regulation by local‐scale vegetation‐fire‐climate feedbacks and secondarily by regional‐scale drivers.Holocene forest composition and fire dynamics appear to be closely co‐regulated and may be affected by local to regional climate variations. The importance of extrinsic drivers and positive/negative feedbacks changes over time, with higher ecoclimate sensitivity before 2.8 ka and greater resilience afterwards.Synthesis: Overall, oak‐ and beech‐dominated ecosystems were highly dynamic over the Holocene, with multiple ecosystem conversions driven by shifting interactions among vegetation, hydroclimate and fire regime. 
    more » « less
  5. Abstract Tropical forest understories tend to be light‐limited. The red‐to‐far‐red ratio (R:FR) is a useful and reliable index of light quality and its spatial variability can influence competition between native and non‐native seedlings. While per cent light transmittance has been quantified in some Hawaiian lowland wet forests (HLWF), no information exists on how the spatial distribution of understorey light varies in relation to species invasion, or if patterns of seedling regeneration and light are linked.We measured the R:FR of light in the understorey to assess light quality in three HLWF forest types: native‐dominated, partially invaded andPsidium cattleyanum‐(strawberry guava) dominated to quantify light quality in the understorey (0–50 cm height). We also identified relationships between light quality and native and non‐native seedling presence, diversity and abundance. Together, these data can help to determine the restoration potential of HLWF.Linear mixed‐effect modelling showed that native‐dominated forests had significantly greater R:FR thanP. cattleyanum‐dominated forests, demonstrating a transformation in the light environment with increased invasion. Heterogeneity in R:FR varied more across sites than among forest types. In both native‐dominated and partially invaded forests, there were more native seedlings in the low‐quality R:FR (0.0–0.40) category and fewer in the medium‐ (0.41–0.70), and high‐quality (≥0.71) light categories than would be expected by chance, and there were no native seedlings in theP. cattleyanum‐dominated forests.Native‐dominated forests had greater species richness and abundance of native seedlings than the partially invaded forests, likely due to propagule availability. However, the spatial clustering of seedlings, the mismatch of native seedlings in light environments less suitable, and a considerable proportion of open high‐quality microsites, highlights that conditions are not optimal for native species in HLWF in the long term.Synthesis and applications.The native‐dominated and partially invaded forests still hold conservation value, despite variation among sites. Seedling additions could be targeted to different R:FR environments and at different spatial scales, but the lack of a strong relationship between R:FR and seedling number suggests that other factors besides light quality should be considered in seedling enrichment or other management activities. 
    more » « less