skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Biased Witnesses: Crystal Thermal Records May Give Conflicting Accounts of Magma Cooling
Abstract Crystals retain an imprint of the dynamic changes within a magma reservoir and hence contain invaluable information about the evolving conditions inside volcanic plumbing systems. However, instead of telling a single, simple story, they comprise overprinted evidence of numerous processes relating to temperature, pressure and composition that drive crystal precipitation and dissolution in magmatic systems. To decipher these different elements in the story that crystals tell, we attempt to identify the observational signatures of a simple, yet ubiquitous process: crystal precipitation and dissolution during magma cooling. To isolate this process in a complex magmatic system with intricate dynamic feedbacks, we assume that synthetic crystals precipitate and dissolve rapidly in response to deviations from thermodynamic equilibrium. In our crystalline‐scale simulations, synthetic crystals drag along the cooler‐than‐ambient melt in which they precipitated and can drive a temperature‐dependent, crystal‐driven convection. We analyze the non‐dimensional conditions for this coupled convection and record the heterogeneous thermal histories that synthetic crystals in this flow regime experience. We show that many synthetic crystals dissolve, loosing their thermal record of the convection. Based on our findings, we suggest that heterogeneity in the thermal history of crystals is more indicative of local, crystal‐scale processes than the overall, system‐wide cooling trend.  more » « less
Award ID(s):
2048430
PAR ID:
10369349
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
5
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inclusions of basaltic melt trapped inside of olivine phenocrysts during igneous crystallization provide a rich, crystal-scale record of magmatic processes ranging from mantle melting to ascent, eruption, and quenching of magma during volcanic eruptions. Melt inclusions are particularly valuable for retaining information on volatiles such as H 2 O and CO 2 that are normally lost by vesiculation and degassing as magma ascends and erupts. However, the record preserved in melt inclusions can be variably obscured by postentrapment processes, and thus melt inclusion research requires careful evaluation of the effects of such processes. Here we review processes by which melt inclusions are trapped and modified after trapping, describe new opportunities for studying the rates of magmatic and volcanic processes over a range of timescales using the kinetics of post-trapping processes, and describe recent developments in the use of volatile contents of melt inclusions to improve our understanding of how volcanoes work. ▪  Inclusions of silicate melt (magma) trapped inside of crystals formed by magma crystallization provide a rich, detailed record of what happens beneath volcanoes. ▪  These inclusions record information ranging from how magma forms deep inside Earth to its final hours as it ascends to the surface and erupts. ▪  The melt inclusion record, however, is complex and hazy because of many processes that modify the inclusions after they become trapped in crystals. ▪  Melt inclusions provide a primary archive of dissolved gases in magma, which are the key ingredients that make volcanoes erupt explosively. 
    more » « less
  2. Abstract Volcanic eruptions are energetic events driven by the imbalance of magmatic forces. The magnitudes of these forces remain poorly constrained because they operate in regions that are inaccessible, either underground or dangerous to approach. New techniques are needed to quantify the processes that drive eruptions and to probe magma storage conditions. Here we present X‐ray microdiffraction measurements of volcanic stress imparted as lattice distortions to the crystal cargo of magma from Yellowstone and Long Valley eruptions. Elevated residual stresses between 100 and 300 MPa are preserved in erupted quartz. Multiple volcanic forces could be culpable for the deformation so we analyzed crystals from pyroclastic falls, pyroclastic density currents, and effusive lavas. Stresses are preserved in all quartz but cannot be attributed to differences in eruption style. Instead, lattice deformation likely preserves an in situ measurement of the deviatoric stresses required for the brittle failure of viscous, crystal‐bearing glass during ascent. 
    more » « less
  3. When magmas erupt at the surface, they may have undergone many changes since their inception. While olivine drives some of these changes through crystallization and fractionation, it also records the magma evolution via mineral chemistry and by trapping mineral and melt inclusions. Olivine is an effective recorder of intensive parameters, such as temperature and melt composition, and provides an outstanding petrological tool for constraining dynamic processes, such as ascent, mixing, and cooling. Olivine sheds light on magmatic puzzles that involve both mafic and more evolved magmas, with protracted and complex magmatic histories that often obscure earlier and deeper processes. This contribution summarizes the current state of how olivine helps reconstruct source-to-surface magma assembly through its chemistry, inclusions, and textures. 
    more » « less
  4. Abstract The long-term thermochemical conditions at which large bodies of silicic magma are stored in the crust is integral to our understanding of the timing, frequency, and intensity of volcanic eruptions and provides important context for interpreting volcano monitoring data. Despite this, however, individual magmatic systems may exhibit a range of time–temperature paths, or thermal histories, that are the result of many complex and, in some cases, competing processes. This complexity contributes to an incomplete understanding of the long-term thermal evolution of magma stored within the Earth’s crust. Of recent interest to the volcanology community is the length of time large volumes of rheologically eruptible and geophysically detectable magma exist within the crust prior to their eruption. Here we use a combination of diffusion chronometry, trace element, and thermodynamic modeling to quantify the long-term thermal evolution of the 2.08 Ma, 630 km3 Cerro Galán Ignimbrite (CGI) in NW Argentina; one of the largest explosive volcanic eruptions in the recent geologic record. We find that diffusion of both Mg and Sr in plagioclase indicate that erupted magmatic material only spent decades to centuries at or above temperatures (~750°C) required to maintain significant volumes of stored eruptible magma. Calculated plagioclase equilibrium compositions reveal an array of liquids that is controlled overall by fractionation of plagioclase + biotite + sanidine, although high-resolution trace element transects record a diversity of fractionation pathways. Overall, we suggest that there is compelling evidence that the magma erupted from the CGI magmatic system spent most of its upper crustal residence in a largely uneruptible state and was rapidly remobilized shortly before eruption. 
    more » « less
  5. null (Ed.)
    Abstract The Okataina Volcanic Centre (OVC), located in the Taupo Volcanic Zone, New Zealand, is a dominantly rhyolitic magmatic system in an arc setting, where eruptions are thought to be driven by mafic recharge. Here, Sr–Pb isotopes, and compositional and textural variations in plagioclase phenocrysts from 10 rhyolitic deposits (two caldera, one immediately post-caldera, four intra-caldera, and three extra-caldera) are used to investigate the OVC magmatic system and identify the sources and assimilants within this diverse mush zone. Plagioclase interiors exhibit normal and reverse zoning, and are commonly in disequilibrium with their accompanying glass, melt inclusions, and whole-rock compositions. This indicates that the crystals nucleated in melts that differed from their carrier magma. In contrast, the outermost rims of crystals exhibit normal zoning that is compositionally consistent with growth in cooling and fractionating melts just prior to eruption. At the intra-crystal scale, the total suite of 87Sr/86Sr ratios are highly variable (0·7042–0·7065 ± 0·0004 average 2SE); however, the majority (95 %) of the crystals are internally homogeneous within error. At whole-crystal scale (where better precision is obtained), 87Sr/86Sr ratios are much more homogeneous (0·70512–0·70543 ± 0·00001 average 2SE) and overlap with their host whole-rock Sr isotopic ratios. Whole-crystal Pb isotopic ratios also largely overlap with whole-rock Pb ratios. The plagioclase and whole-rock isotopic compositions indicate significant crustal assimilation (≥20 %) of Torlesse-like metasediments (local basement rock) by a depleted mid-ocean ridge mantle magma source, and Pb isotopes require variable fluid-dominant subduction flux. The new data support previous petrogenetic models for OVC magmas that require crystal growth in compositionally and thermally distinct magmas within a complex of disconnected melt-and-mush reservoirs. These reservoirs were rejuvenated by underplating basaltic magmas that serve as an eruption trigger. However, the outermost rims of the plagioclase imply that interaction between silicic melts and eruption-triggering mafic influx is largely limited to heat and volatile transfer, and results in rapid mobilization and syn-eruption mixing of rhyolitic melts. Finally, relatively uniform isotopic compositions of plagioclase indicate balanced contributions from the crust and mantle over the lifespan of the OVC magmatic system. 
    more » « less