skip to main content

Title: Building material stock analysis is critical for effective circular economy strategies: a comprehensive review

Buildings account for the largest share of accumulated materials and waste globally. Tracking the material composition, quantity and location of these materials, known as building material stock analysis (MSA), is a first step in enabling the reuse or repurposing of materials, key strategies of the circular economy. While the number of building MSAs is growing, there is a need to coalesce methods, data and scope. Therefore, in this work, we reviewed and evaluated 62 journal and conference articles on MSA of buildings from different angles including scope, boundaries, archetype classification, material intensity determination, approaches (i.e. bottom-up, top-down, remote sensing) and quantity of materials to identify barriers, gaps and opportunities in this area along with its implications for decision-making, policy and regulations. We cataloged the three major approaches of MSAs and discuss their advantages and shortcomings. We also created a comprehensive directory of building archetypes, references and materials for future researchers. As expected, most of the studies estimated that concrete had the largest mass compared with other materials; however, mass-based distribution of materials showed significant variations in different building stocks across the world. Also, embedded plastics and their types remain under-represented in current studies. A major barrier to MSA is related to a lack of information on physical attributes and geographic information system, design and construction data. Policy makers can play a role in mitigating data barriers through instituting regulations that enforce the reporting of building-related data during the permitting process. Furthermore, outcomes of building MSA can help policy makers when considering incentives for design and construction that utilize these abundant building materials.

more » « less
Award ID(s):
1934824 2035150
Author(s) / Creator(s):
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Page Range / eLocation ID:
Article No. 032001
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.) At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less
  2. Abstract Buildings consume over 40% of global energy in their construction and operations contributing to over 39% of global carbon emission each year. This huge environmental footprint presents an excellent opportunity to reduce energy use and help deliver an environmentally sustainable built environment. Most of the energy is consumed by buildings as embodied energy (EE) and operational energy (OE). EE is used directly and indirectly during buildings’ initial construction, maintenance and replacement, and demolition phases through construction products and services. OE is used in the processes of heating, cooling, water heating, lighting, and operating building equipment. Most environmental optimization research has been centered on energy and carbon emission overlooking another critical sustainability aspect, water use. Each building also consumes a significant amount of freshwater as embodied water (EW) or virtual water in its initial construction, maintenance and replacement, and demolition phases. Since each primary and secondary energy source depletes water in its extraction, refinement or production, there is also a water expense associated with EE and OE use that must also be included in total EW use. The total EW, therefore, includes both non-energy and energy related water use. Research suggests that there are tradeoffs between EE and EW that may complicate design decisions such as material selection for environmental sustainability. In other words, a material selected for its lower EE may have higher EW and selecting such a material may not help reach environmental sustainability goals since water scarcity is becoming a grave problem. In this paper, we created an input-output-based hybrid (IOH) model for calculating and comparing EE and EW of building materials frequently used in building construction. The main goal is to examine and highlight any tradeoffs that may exist when selecting one material over another. The results reveal that there is a weak correlation between EE and total EW that is the sum of energy and non-energy water use, which means that a design decision made solely based on EE may conflict with EW. The share of energy related water use in total EW of construction materials also varies significantly (2.5%-31.2%), indicating that reducing energy use alone may not be sufficient to reduce freshwater use; additional efforts may be needed to decrease the use of materials and processes that are water intensive. The results of this study are significant to achieving the goal of creating a truly sustainable built environment. 
    more » « less
  3. Buildings consume over half of annual energy supply as embodied and operating energy in their construction and operation releasing harmful emissions to the atmosphere. Over 90 % of the embodied energy is attributed to construction materials used in building structure, envelope, and interiors that must be reduced to minimize material use. Concrete is one of the major materials that contributes significantly to the energy and carbon footprint of buildings, as it is responsible for 5-9 % of global carbon emission. Because most of the concrete use in the building sector occurs in building structures, assessing how building design parameters influence its environmental sustainability is important. One of the design parameters that impact the sustainability of buildings is the aspect ratio, which is defined as the ratio of horizontal to vertical surface area of a building. A building with the same floor area can be designed horizontally or vertically with different aspect ratios, which will influence its structural design and eventually the amount of concrete used in the building. In this paper, we examine how aspect ratio may affect the environmental sustainability of a buildings foundation, structural framing, and slab. We model the structure of a generic building with different aspect ratio to analyze if aspect ratio can help reduce the energy and carbon embodied in reinforced concrete structures. 
    more » « less
  4. Global sea level rise (SLR) may present the most urgent climate change adaptation challenge facing coastal communities today. The direction is clear, impacts are manifesting now, and the pace of rise is likely to accelerate. As a result, many coastal communities have begun planning their adaptation response and some are quite far along in the process. At the same time, evolving science provides new observations, models, and understanding of land-ocean dynamics that can increase clarity while also in many ways increase uncertainty about the scope, timing, and regional nature of SLR. The planning, design, and construction of water infrastructure has a relatively long timeline (up to 30 years), and thus the evolution of scientific knowledge presents challenges for communities already planning for SLR based on previous information. When does science become actionable for decision-makers? Are there characteristics or thresholds that could cause communities decide to move from one set of scenarios to another, or change approaches altogether? This talk focuses on two important studies different in kind but dominating the conversation about SLR adaptation planning today. First, DeConto and Pollard (2016) have suggested significantly higher upper end projections for Antarctic ice sheet melt, which increase both global and regional SLR above most previously assumed upper limits. Second, probabilistic projections using model output and expert elicitation as presented in Kopp et al (2014) are increasingly appearing in federal reports and planning-related documents. These two papers are pushing the boundaries of the science-to-planning interface, while the application of this work as actionable science is far from settled. This talk will present the outcome of recent conversations among our diverse author team. The authors are engaged in SLR planning related contexts from many angles and perspectives and include the aforementioned Kopp and DeConto as well as representatives of the City of San Francisco, Army Corps of Engineers, Environmental Protection Agency, and engineering consultant community. Attendees of this session will hear a presentation demonstrating co-production in process, including topics about which the authors have and have not agreed upon to date, with some attention to next steps in the process. 
    more » « less
  5. null (Ed.)
    Abstract Freshwater salinization is an emerging global problem impacting safe drinking water, ecosystem health and biodiversity, infrastructure corrosion, and food production. Freshwater salinization originates from diverse anthropogenic and geologic sources including road salts, human-accelerated weathering, sewage, urban construction, fertilizer, mine drainage, resource extraction, water softeners, saltwater intrusion, and evaporative concentration of ions due to hydrologic alterations and climate change. The complex interrelationships between salt ions and chemical, biological, and geologic parameters and consequences on the natural, social, and built environment are called Freshwater Salinization Syndrome (FSS). Here, we provide a comprehensive overview of salinization issues (past, present, and future), and we investigate drivers and solutions. We analyze the expanding global magnitude and scope of FSS including its discovery in humid regions, connections to human-accelerated weathering and mobilization of ‘chemical cocktails.’ We also present data illustrating: (1) increasing trends in salt ion concentrations in some of the world’s major freshwaters, including critical drinking water supplies; (2) decreasing trends in nutrient concentrations in rivers due to regulations but increasing trends in salinization, which have been due to lack of adequate management and regulations; (3) regional trends in atmospheric deposition of salt ions and storage of salt ions in soils and groundwater, and (4) applications of specific conductance as a proxy for tracking sources and concentrations of groups of elements in freshwaters. We prioritize FSS research needs related to better understanding: (1) effects of saltwater intrusion on ecosystem processes, (2) potential health risks from groundwater contamination of home wells, (3) potential risks to clean and safe drinking water sources, (4) economic and safety impacts of infrastructure corrosion, (5) alteration of biodiversity and ecosystem functions, and (6) application of high-frequency sensors in state-of-the art monitoring and management. We evaluate management solutions using a watershed approach spanning air, land, and water to explore variations in sources, fate and transport of different salt ions ( e.g. monitoring of atmospheric deposition of ions, stormwater management, groundwater remediation, and managing road runoff). We also identify tradeoffs in management approaches such as unanticipated retention and release of chemical cocktails from urban stormwater management best management practices (BMPs) and unintended consequences of alternative deicers on water quality. Overall, we show that FSS has direct and indirect effects on mobilization of diverse chemical cocktails of ions, metals, nutrients, organics, and radionuclides in freshwaters with mounting impacts. Our comprehensive review suggests what could happen if FSS were not managed into the future and evaluates strategies for reducing increasing risks to clean and safe drinking water, human health, costly infrastructure, biodiversity, and critical ecosystem services. 
    more » « less