Abstract Motivation The success of genome sequencing techniques has resulted in rapid explosion of protein sequences. Collections of multiple homologous sequences can provide critical information to the modeling of structure and function of unknown proteins. There are however no standard and efficient pipeline available for sensitive multiple sequence alignment (MSA) collection. This is particularly challenging when large whole-genome and metagenome databases are involved. Results We developed DeepMSA, a new open-source method for sensitive MSA construction, which has homologous sequences and alignments created from multi-sources of whole-genome and metagenome databases through complementary hidden Markov model algorithms. The practical usefulness of the pipeline was examined in three large-scale benchmark experiments based on 614 non-redundant proteins. First, DeepMSA was utilized to generate MSAs for residue-level contact prediction by six coevolution and deep learning-based programs, which resulted in an accuracy increase in long-range contacts by up to 24.4% compared to the default programs. Next, multiple threading programs are performed for homologous structure identification, where the average TM-score of the template alignments has over 7.5% increases with the use of the new DeepMSA profiles. Finally, DeepMSA was used for secondary structure prediction and resulted in statistically significant improvements in the Q3 accuracy. It is noted that all these improvements were achieved without re-training the parameters and neural-network models, demonstrating the robustness and general usefulness of the DeepMSA in protein structural bioinformatics applications, especially for targets without homologous templates in the PDB library. Availability and implementation https://zhanglab.ccmb.med.umich.edu/DeepMSA/. Supplementary information Supplementary data are available at Bioinformatics online.
more »
« less
Improving deep learning protein monomer and complex structure prediction using DeepMSA2 with huge metagenomics data
Abstract Leveraging iterative alignment search through genomic and metagenome sequence databases, we report the DeepMSA2 pipeline for uniform protein single- and multichain multiple-sequence alignment (MSA) construction. Large-scale benchmarks show that DeepMSA2 MSAs can remarkably increase the accuracy of protein tertiary and quaternary structure predictions compared with current state-of-the-art methods. An integrated pipeline with DeepMSA2 participated in the most recent CASP15 experiment and created complex structural models with considerably higher quality than the AlphaFold2-Multimer server (v.2.2.0). Detailed data analyses show that the major advantage of DeepMSA2 lies in its balanced alignment search and effective model selection, and in the power of integrating huge metagenomics databases. These results demonstrate a new avenue to improve deep learning protein structure prediction through advanced MSA construction and provide additional evidence that optimization of input information to deep learning-based structure prediction methods must be considered with as much care as the design of the predictor itself.
more »
« less
- Award ID(s):
- 2025426
- PAR ID:
- 10483841
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Methods
- Volume:
- 21
- Issue:
- 2
- ISSN:
- 1548-7091
- Format(s):
- Medium: X Size: p. 279-289
- Size(s):
- p. 279-289
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report the results of the “UM‐TBM” and “Zheng” groups in CASP15 for protein monomer and complex structure prediction. These prediction sets were obtained using the D‐I‐TASSER and DMFold‐Multimer algorithms, respectively. For monomer structure prediction, D‐I‐TASSER introduced four new features during CASP15: (i) a multiple sequence alignment (MSA) generation protocol that combines multi‐source MSA searching and a structural modeling‐based MSA ranker; (ii) attention‐network based spatial restraints; (iii) a multi‐domain module containing domain partition and arrangement for domain‐level templates and spatial restraints; (iv) an optimized I‐TASSER‐based folding simulation system for full‐length model creation guided by a combination of deep learning restraints, threading alignments, and knowledge‐based potentials. For 47 free modeling targets in CASP15, the final models predicted by D‐I‐TASSER showed average TM‐score 19% higher than the standard AlphaFold2 program. We thus showed that traditional Monte Carlo‐based folding simulations, when appropriately coupled with deep learning algorithms, can generate models with improved accuracy over end‐to‐end deep learning methods alone. For protein complex structure prediction, DMFold‐Multimer generated models by integrating a new MSA generation algorithm (DeepMSA2) with the end‐to‐end modeling module from AlphaFold2‐Multimer. For the 38 complex targets, DMFold‐Multimer generated models with an average TM‐score of 0.83 and Interface Contact Score of 0.60, both significantly higher than those of competing complex prediction tools. Our analyses on complexes highlighted the critical role played by MSA generating, ranking, and pairing in protein complex structure prediction. We also discuss future room for improvement in the areas of viral protein modeling and complex model ranking.more » « less
-
Abstract Accurate prediction of protein secondary structure (alpha‐helix, beta‐strand and coil) is a crucial step for protein inter‐residue contact prediction and ab initio tertiary structure prediction. In a previous study, we developed a deep belief network‐based protein secondary structure method (DNSS1) and successfully advanced the prediction accuracy beyond 80%. In this work, we developed multiple advanced deep learning architectures (DNSS2) to further improve secondary structure prediction. The major improvements over the DNSS1 method include (a) designing and integrating six advanced one‐dimensional deep convolutional/recurrent/residual/memory/fractal/inception networks to predict 3‐state and 8‐state secondary structure, and (b) using more sensitive profile features inferred from Hidden Markov model (HMM) and multiple sequence alignment (MSA). Most of the deep learning architectures are novel for protein secondary structure prediction. DNSS2 was systematically benchmarked on independent test data sets with eight state‐of‐art tools and consistently ranked as one of the best methods. Particularly, DNSS2 was tested on the protein targets of 2018 CASP13 experiment and achieved the Q3 score of 81.62%, SOV score of 72.19%, and Q8 score of 73.28%. DNSS2 is freely available at:https://github.com/multicom-toolbox/DNSS2.more » « less
-
Abstract MotivationMultiple sequence alignments (MSAs) of homologous sequences contain information on structural and functional constraints and their evolutionary histories. Despite their importance for many downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-processing step, without any guidance from the application it will be used for. ResultsHere, we implement a smooth and differentiable version of the Smith–Waterman pairwise alignment algorithm that enables jointly learning an MSA and a downstream machine learning system in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly improve contact prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by connecting our differentiable alignment module to AlphaFold2 and maximizing predicted confidence, we can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the alignments that improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work highlights the potential of differentiable dynamic programming to improve neural network pipelines that rely on an alignment and the potential dangers of optimizing predictions of protein sequences with methods that are not fully understood. Availability and implementationOur code and examples are available at: https://github.com/spetti/SMURF. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Martelli, Pier Luigi (Ed.)Abstract Motivation Accurate prediction of residue-residue distances is important for protein structure prediction. We developed several protein distance predictors based on a deep learning distance prediction method and blindly tested them in the 14th Critical Assessment of Protein Structure Prediction (CASP14). The prediction method uses deep residual neural networks with the channel-wise attention mechanism to classify the distance between every two residues into multiple distance intervals. The input features for the deep learning method include co-evolutionary features as well as other sequence-based features derived from multiple sequence alignments (MSAs). Three alignment methods are used with multiple protein sequence/profile databases to generate MSAs for input feature generation. Based on different configurations and training strategies of the deep learning method, five MULTICOM distance predictors were created to participate in the CASP14 experiment. Results Benchmarked on 37 hard CASP14 domains, the best performing MULTICOM predictor is ranked 5th out of 30 automated CASP14 distance prediction servers in terms of precision of top L/5 long-range contact predictions (i.e. classifying distances between two residues into two categories: in contact (< 8 Angstrom) and not in contact otherwise) and performs better than the best CASP13 distance prediction method. The best performing MULTICOM predictor is also ranked 6th among automated server predictors in classifying inter-residue distances into 10 distance intervals defined by CASP14 according to the precision of distance classification. The results show that the quality and depth of MSAs depend on alignment methods and sequence databases and have a significant impact on the accuracy of distance prediction. Using larger training datasets and multiple complementary features improves prediction accuracy. However, the number of effective sequences in MSAs is only a weak indicator of the quality of MSAs and the accuracy of predicted distance maps. In contrast, there is a strong correlation between the accuracy of contact/distance predictions and the average probability of the predicted contacts, which can therefore be more effectively used to estimate the confidence of distance predictions and select predicted distance maps. Availability The software package, source code, and data of DeepDist2 are freely available at https://github.com/multicom-toolbox/deepdist and https://zenodo.org/record/4712084#.YIIM13VKhQM.more » « less
An official website of the United States government
