Abstract Stellar evolution models calculate convective boundaries using either the Schwarzschild or Ledoux criterion, but confusion remains regarding which criterion to use. Here we present a 3D hydrodynamical simulation of a convection zone and adjacent radiative zone, including both thermal and compositional buoyancy forces. As expected, regions that are unstable according to the Ledoux criterion are convective. Initially, the radiative zone adjacent to the convection zone is Schwarzschild unstable but Ledoux stable due to a composition gradient. Over many convective overturn timescales, the convection zone grows via entrainment. The convection zone saturates at the size originally predicted by the Schwarzschild criterion, although in this final state the Schwarzschild and Ledoux criteria agree. Therefore, the Schwarzschild criterion should be used to determine the size of stellar convection zones, except possibly during short-lived evolutionary stages in which entrainment persists.
more »
« less
Magnetized Oscillatory Double-diffusive Convection
Abstract We study the properties of oscillatory double-diffusive convection (ODDC) in the presence of a uniform vertical background magnetic field. ODDC takes place in stellar regions that are unstable according to the Schwarzschild criterion and stable according to the Ledoux criterion (sometimes called semiconvective regions), which are often predicted to reside just outside the core of intermediate-mass main-sequence stars. Previous hydrodynamic studies of ODDC have shown that the basic instability saturates into a state of weak wave-like convection, but that a secondary instability can sometimes transform it into a state of layered convection, where layers then rapidly merge and grow until the entire region is fully convective. We find that magnetized ODDC has very similar properties overall, with some important quantitative differences. A linear stability analysis reveals that the fastest-growing modes are unaffected by the field, but that other modes are. Numerically, the magnetic field is seen to influence the saturation of the basic instability, overall reducing the turbulent fluxes of temperature and composition. This in turn affects layer formation, usually delaying it, and occasionally suppressing it entirely for sufficiently strong fields. Further work will be needed, however, to determine the field strength above which layer formation is actually suppressed in stars. Potential observational implications are briefly discussed.
more »
« less
- Award ID(s):
- 1908338
- PAR ID:
- 10369396
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 935
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 33
- Size(s):
- Article No. 33
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The Tayler instability (TI) of toroidal magnetic fields is a candidate mechanism for driving turbulence, angular momentum (AM) transport, and dynamo action in stellar radiative zones. Recently V. A. Skoutnev & A. M. Beloborodov (2024) revisited the linear stability analysis of a toroidal magnetic field in a rotating and stably stratified fluid. In this paper, we extend the analysis to include both thermal and compositional stratification, allowing for general application to stars. We formulate an analytical instability criterion for use as a “toggle switch” in stellar evolution codes. It determines when and where in a star the TI develops with a canonical growth rate as assumed in existing prescriptions for AM transport based on Tayler–Spruit dynamo. We implement such a toggle switch in the MESA stellar evolution code and map out the stability of each mode of the TI on a grid of stellar evolution models. In evolved lower-mass stars, the TI becomes suppressed in the compositionally stratified layer around the hydrogen-burning shell. In higher-mass stars, the TI can be active throughout their radiative zones but at different wavenumbers than previously expected.more » « less
-
A theoretical study is made of the stability of propagating internal gravity wave modes along a horizontal stratified fluid layer bounded by rigid walls. The analysis is based on the Floquet eigenvalue problem for infinitesimal perturbations to a wave mode of small amplitude. The appropriate instability mechanism hinges on how the perturbation spatial scale relative to the basic-state wavelength, controlled by a parameter $$\mu$$ , compares to the basic-state amplitude parameter, $$\epsilon \ll 1$$ . For $$\mu ={O}(1)$$ , the onset of instability arises due to perturbations that form resonant triads with the underlying wave mode. For short-scale perturbations such that $$\mu \ll 1$$ but $$\alpha =\mu /\epsilon \gg 1$$ , this triad resonance instability reduces to the familiar parametric subharmonic instability (PSI), where triads comprise fine-scale perturbations with half the basic-wave frequency. However, as $$\mu$$ is further decreased holding $$\epsilon$$ fixed, higher-frequency perturbations than these two subharmonics come into play, and when $$\alpha ={O}(1)$$ Floquet modes feature broadband spectrum. This broadening phenomenon is a manifestation of the advection of small-scale perturbations by the basic-wave velocity field. By working with a set of ‘streamline coordinates’ in the frame of the basic wave, this advection can be ‘factored out’. Importantly, when $$\alpha ={O}(1)$$ PSI is replaced by a novel, multi-mode resonance mechanism which has a stabilising effect that provides an inviscid short-scale cut-off to PSI. The theoretical predictions are supported by numerical results from solving the Floquet eigenvalue problem for a mode-1 basic state.more » « less
-
Visco-resistive magnetohydrodynamic turbulence, driven by a two-dimensional unstable shear layer that is maintained by an imposed body force, is examined by decomposing it into dissipationless linear eigenmodes of the initial profiles. The down-gradient momentum flux, as expected, originates from the large-scale instability. However, continual up-gradient momentum transport by large-scale linearly stable but nonlinearly excited eigenmodes is identified, and found to nearly cancel the down-gradient transport by unstable modes. The stable modes effectuate this by depleting the large-scale turbulent fluctuations via energy transfer to the mean flow. This establishes a physical mechanism underlying the long-known observation that coherent vortices formed from nonlinear saturation of the instability reduce turbulent transport and fluctuations, as such vortices are composed of both the stable and unstable modes, which are nearly equal in their amplitudes. The impact of magnetic fields on the nonlinearly excited stable modes is then quantified. Even when imposing a strong magnetic field that almost completely suppresses the instability, the up-gradient transport by the stable modes is at least two-thirds of the down-gradient transport by the unstable modes, whereas for weaker fields, this fraction reaches up to 98% . These effects are persistent with variations in magnetic Prandtl number and forcing strength. Finally, continuum modes are shown to be energetically less important, but essential for capturing the magnetic fluctuations and Maxwell stress. A simple analytical scaling law is derived for their saturated turbulent amplitudes. It predicts the fall-off rate as the inverse of the Fourier wavenumber, a property which is confirmed in numerical simulations.more » « less
-
In this review, we discuss the physical characteristics of the magnetic dual chiral density wave (MDCDW) phase of dense quark matter and argue why it is a promising candidate for the interior matter phase of neutron stars. The MDCDW condensate occurs in the presence of a magnetic field. It is a single-modulated chiral density wave characterized by two dynamically generated parameters: the fermion quasiparticle mass m and the condensate spatial modulation q. The lowest-Landau-level quasiparticle modes in the MDCDW system are asymmetric about the zero energy, a fact that leads to the topological properties and anomalous electric transport exhibited by this phase. The topology makes the MDCDW phase robust against thermal phonon fluctuations, and as such, it does not display the Landau–Peierls instability, a staple feature of single-modulated inhomogeneous chiral condensates in three dimensions. The topology is also reflected in the presence of the electromagnetic chiral anomaly in the effective action and in the formation of hybridized propagating modes known as axion-polaritons. Taking into account that one of the axion-polaritons of this quark phase is gapped, we argue how incident γ-ray photons can be converted into gapped axion-polaritons in the interior of a magnetar star in the MDCDW phase leading the star to collapse, a phenomenon that can serve to explain the so-called missing pulsar problem in the galactic center.more » « less
An official website of the United States government
