skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Stability of internal gravity wave modes: from triad resonance to broadband instability
A theoretical study is made of the stability of propagating internal gravity wave modes along a horizontal stratified fluid layer bounded by rigid walls. The analysis is based on the Floquet eigenvalue problem for infinitesimal perturbations to a wave mode of small amplitude. The appropriate instability mechanism hinges on how the perturbation spatial scale relative to the basic-state wavelength, controlled by a parameter $$\mu$$ , compares to the basic-state amplitude parameter, $$\epsilon \ll 1$$ . For $$\mu ={O}(1)$$ , the onset of instability arises due to perturbations that form resonant triads with the underlying wave mode. For short-scale perturbations such that $$\mu \ll 1$$ but $$\alpha =\mu /\epsilon \gg 1$$ , this triad resonance instability reduces to the familiar parametric subharmonic instability (PSI), where triads comprise fine-scale perturbations with half the basic-wave frequency. However, as $$\mu$$ is further decreased holding $$\epsilon$$ fixed, higher-frequency perturbations than these two subharmonics come into play, and when $$\alpha ={O}(1)$$ Floquet modes feature broadband spectrum. This broadening phenomenon is a manifestation of the advection of small-scale perturbations by the basic-wave velocity field. By working with a set of ‘streamline coordinates’ in the frame of the basic wave, this advection can be ‘factored out’. Importantly, when $$\alpha ={O}(1)$$ PSI is replaced by a novel, multi-mode resonance mechanism which has a stabilising effect that provides an inviscid short-scale cut-off to PSI. The theoretical predictions are supported by numerical results from solving the Floquet eigenvalue problem for a mode-1 basic state.  more » « less
Award ID(s):
2004589
PAR ID:
10434260
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
961
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent experiments have observed the emergence of standing waves at the free surface of elastic bodies attached to a rigid oscillating substrate and subjected to critical values of forcing frequency and amplitude. This phenomenon, known as Faraday instability, is now well understood for viscous fluids but surprisingly eluded any theoretical explanation for soft solids. Here, we characterize Faraday waves in soft incompressible slabs using the Floquet theory to study the onset of harmonic and subharmonic resonance eigenmodes. We consider a ground state corresponding to a finite homogeneous deformation of the elastic slab. We transform the incremental boundary value problem into an algebraic eigenvalue problem characterized by the three dimensionless parameters, that characterize the interplay of gravity, capillary and elastic waves. Remarkably, we found that Faraday instability in soft solids is characterized by a harmonic resonance in the physical range of the material parameters. This seminal result is in contrast to the subharmonic resonance that is known to characterize viscous fluids, and opens the path for using Faraday waves for a precise and robust experimental method that is able to distinguish solid-like from fluid-like responses of soft matter at different scales. 
    more » « less
  2. We examine the linear stability of a homogeneous gas–solid suspension of small Stokes number particles, with a moderate mass loading, subject to a simple shear flow. The modulation of the gravitational force exerted on the suspension, due to preferential concentration of particles in regions of low vorticity, in response to an imposed velocity perturbation, can lead to an algebraic instability. Since the fastest growing modes have wavelengths small compared with the characteristic length scale ( $$U_{g}/{\it\Gamma}$$ ) and oscillate with frequencies large compared with $${\it\Gamma}$$ , $$U_{g}$$ being the settling velocity and $${\it\Gamma}$$ the shear rate, we apply the WKB method, a multiple scale technique. This analysis reveals the existence of a number density mode which travels due to the settling of the particles and a momentum mode which travels due to the cross-streamline momentum transport caused by settling. These modes are coupled at a turning point which occurs when the wavevector is nearly horizontal and the most amplified perturbations are those in which a momentum wave upstream of the turning point creates a downstream number density wave. The particle number density perturbations reach a finite, but large amplitude that persists after the wave becomes aligned with the velocity gradient. The growth of the amplitude of particle concentration and fluid velocity disturbances is characterised as a function of the wavenumber and Reynolds number ( $$\mathit{Re}=U_{g}^{2}/{\it\Gamma}{\it\nu}$$ ) using both asymptotic theory and a numerical solution of the linearised equations. 
    more » « less
  3. With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high- $$\beta$$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $$\beta$$ is increased. For mode amplitudes $$|\delta B/B_0| \gtrsim 0.3$$ , this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $$|\delta B/B_0| \gtrsim 2\beta ^{-1}$$ . The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high- $$\beta$$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind. 
    more » « less
  4. Wave-particle interaction plays a crucial role in the dynamics of the Earth’s radiation belts. Cyclotron resonance between coherent whistler mode electromagnetic waves and energetic electrons of the radiation belts is often called a coherent instability. Coherent instability leads to wave amplification/generation and particle acceleration/scattering. The effect of wave on particle’s distribution function is a key component of the instability. In general, whistler wave amplitude can grow over threshold of quasi-linear (linear) diffusion theory which analytically tracks the time-evolution of a particle distribution. Thus, a numerical approach is required to model the nonlinear wave induced perturbations on particle distribution function. A backward test particle model is used to determine the energetic electrons phase space dynamics as a result of coherent whistler wave instability. The results show the formation of a phase space features with much higher resolution than is available with forward scattering models. In the nonlinear regime the formation of electron phase space holes upstream of a monochromatic wave is observed. The results validate the nonlinear phase trapping mechanism that drives nonlinear whistler mode growth. The key differences in phase-space perturbations between the linear and nonlinear scenarios are also illustrated. For the linearized equations or for low (below threshold) wave amplitudes in the nonlinear case, there is no formation of a phase-space hole and both models show features that can be characterized as linear striations or ripples in phase-space. 
    more » « less
  5. We explore basic mechanisms for the instability of finite-amplitude interfacial gravity waves through a two-dimensional linear stability analysis of the periodic and irrotational plane motion of the interface between two unbounded homogeneous fluids of different density in the absence of background currents. The flow domains are conformally mapped into two half-planes, where the time-varying interface is always mapped onto the real axis. This unsteady conformal mapping technique with a suitable representation of the interface reduces the linear stability problem to a generalized eigenvalue problem, and allows us to accurately compute the growth rates of unstable disturbances superimposed on steady waves for a wide range of parameters. Numerical results show that the wave-induced Kelvin–Helmholtz (KH) instability due to the tangential velocity jump across the interface produced by the steady waves is the major instability mechanism. Any disturbances whose dominant wavenumbers are greater than a critical value grow exponentially. This critical wavenumber that depends on the steady wave steepness and the density ratio can be approximated by a local KH stability analysis, where the spatial variation of the wave-induced currents is neglected. It is shown, however, that the growth rates need to be found numerically with care and the successive collisions of eigenvalues result in the wave-induced KH instability. In addition, the present study extends the previous results for the small-wavenumber instability, such as modulational instability, of relatively small-amplitude steady waves to finite-amplitude ones. 
    more » « less