skip to main content


Title: Stability of internal gravity wave modes: from triad resonance to broadband instability
A theoretical study is made of the stability of propagating internal gravity wave modes along a horizontal stratified fluid layer bounded by rigid walls. The analysis is based on the Floquet eigenvalue problem for infinitesimal perturbations to a wave mode of small amplitude. The appropriate instability mechanism hinges on how the perturbation spatial scale relative to the basic-state wavelength, controlled by a parameter $\mu$ , compares to the basic-state amplitude parameter, $\epsilon \ll 1$ . For $\mu ={O}(1)$ , the onset of instability arises due to perturbations that form resonant triads with the underlying wave mode. For short-scale perturbations such that $\mu \ll 1$ but $\alpha =\mu /\epsilon \gg 1$ , this triad resonance instability reduces to the familiar parametric subharmonic instability (PSI), where triads comprise fine-scale perturbations with half the basic-wave frequency. However, as $\mu$ is further decreased holding $\epsilon$ fixed, higher-frequency perturbations than these two subharmonics come into play, and when $\alpha ={O}(1)$ Floquet modes feature broadband spectrum. This broadening phenomenon is a manifestation of the advection of small-scale perturbations by the basic-wave velocity field. By working with a set of ‘streamline coordinates’ in the frame of the basic wave, this advection can be ‘factored out’. Importantly, when $\alpha ={O}(1)$ PSI is replaced by a novel, multi-mode resonance mechanism which has a stabilising effect that provides an inviscid short-scale cut-off to PSI. The theoretical predictions are supported by numerical results from solving the Floquet eigenvalue problem for a mode-1 basic state.  more » « less
Award ID(s):
2004589
NSF-PAR ID:
10434260
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
961
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent experiments have observed the emergence of standing waves at the free surface of elastic bodies attached to a rigid oscillating substrate and subjected to critical values of forcing frequency and amplitude. This phenomenon, known as Faraday instability, is now well understood for viscous fluids but surprisingly eluded any theoretical explanation for soft solids. Here, we characterize Faraday waves in soft incompressible slabs using the Floquet theory to study the onset of harmonic and subharmonic resonance eigenmodes. We consider a ground state corresponding to a finite homogeneous deformation of the elastic slab. We transform the incremental boundary value problem into an algebraic eigenvalue problem characterized by the three dimensionless parameters, that characterize the interplay of gravity, capillary and elastic waves. Remarkably, we found that Faraday instability in soft solids is characterized by a harmonic resonance in the physical range of the material parameters. This seminal result is in contrast to the subharmonic resonance that is known to characterize viscous fluids, and opens the path for using Faraday waves for a precise and robust experimental method that is able to distinguish solid-like from fluid-like responses of soft matter at different scales. 
    more » « less
  2. Abstract

    We study the stability of Stokes waves in an ideal fluid of infinite depth. The perturbations that are either coperiodic with a Stokes wave (superharmonics) or integer multiples of its period (subharmonics) are considered. The eigenvalue problem is formulated using the conformal canonical Hamiltonian variables and admits numerical solution in a matrix‐free manner. We find that the operator matrix of the eigenvalue problem can be factored into a product of two operators: a self‐adjoint operator and an operator inverted analytically. Moreover, the self‐adjoint operator matrix is efficiently inverted by a Krylov‐space‐based method and enjoys spectral accuracy. Application of the operator matrix associated with the eigenvalue problem requires only flops, whereNis the number of Fourier modes needed to resolve a Stokes wave. Additionally, due to the matrix‐free approach, storage for the matrix of coefficients is no longer required. The new method is based on the shift‐invert technique, and its application is illustrated in the classic examples of the Benjamin–Feir and the superharmonic instabilities. Simulations confirm numerical results of preceding works and recent theoretical work for the Benjamin–Feir instability (for small amplitude waves), and new results for large amplitude waves are shown.

     
    more » « less
  3. With the support of hybrid-kinetic simulations and analytic theory, we describe the nonlinear behaviour of long-wavelength non-propagating (NP) modes and fast magnetosonic waves in high- $\beta$ collisionless plasmas, with particular attention to their excitation of and reaction to kinetic micro-instabilities. The perpendicularly pressure balanced polarization of NP modes produces an excess of perpendicular pressure over parallel pressure in regions where the plasma $\beta$ is increased. For mode amplitudes $|\delta B/B_0| \gtrsim 0.3$ , this excess excites the mirror instability. Particle scattering off these micro-scale mirrors frustrates the nonlinear saturation of transit-time damping, ensuring that large-amplitude NP modes continue their decay to small amplitudes. At asymptotically large wavelengths, we predict that the mirror-induced scattering will be large enough to interrupt transit-time damping entirely, isotropizing the pressure perturbations and morphing the collisionless NP mode into the magnetohydrodynamic (MHD) entropy mode. In fast waves, a fluctuating pressure anisotropy drives both mirror and firehose instabilities when the wave amplitude satisfies $|\delta B/B_0| \gtrsim 2\beta ^{-1}$ . The induced particle scattering leads to delayed shock formation and MHD-like wave dynamics. Taken alongside prior work on self-interrupting Alfvén waves and self-sustaining ion-acoustic waves, our results establish a foundation for new theories of electromagnetic turbulence in low-collisionality, high- $\beta$ plasmas such as the intracluster medium, radiatively inefficient accretion flows and the near-Earth solar wind. 
    more » « less
  4. Surface waves are excited at the boundary of a mechanically vibrated cylindrical container and are referred to as edge waves. Resonant waves are considered, which are formed by a travelling wave formed at the edge and constructively interfering with its centre reflection. These waves exhibit an axisymmetric spatial structure defined by the mode number $n$ . Viscoelastic effects are investigated using two materials with tunable properties; (i) glycerol/water mixtures (viscosity) and (ii) agarose gels (elasticity). Long-exposure white-light imaging is used to quantify the magnitude of the wave slope from which frequency-response diagrams are obtained via frequency sweeps. Resonance peaks and bandwidths are identified. These results show that for a given $n$ , the resonance frequency decreases with viscosity and increases with elasticity. The amplitude of the resonance peaks are much lower for gels and decrease further with mode number, indicating that much larger driving amplitudes are needed to overcome the elasticity and excite edge waves. The natural frequencies for a viscoelastic fluid in a cylindrical container with a pinned contact-line are computed from a theoretical model that depends upon the dimensionless Ohnesorge number ${Oh}$ , elastocapillary number ${Ec}$ and Bond number ${Bo}$ . All show good agreement with experimental observations. The eigenvalue problem is equivalent to the classic damped-driven oscillator model on linear operators with viscosity appearing as a damping force and elasticity and surface tension as restorative forces, consistent with our physical interpretation of these viscoelastic effects. 
    more » « less
  5. We examine the linear stability of a homogeneous gas–solid suspension of small Stokes number particles, with a moderate mass loading, subject to a simple shear flow. The modulation of the gravitational force exerted on the suspension, due to preferential concentration of particles in regions of low vorticity, in response to an imposed velocity perturbation, can lead to an algebraic instability. Since the fastest growing modes have wavelengths small compared with the characteristic length scale ( $U_{g}/{\it\Gamma}$ ) and oscillate with frequencies large compared with ${\it\Gamma}$ , $U_{g}$ being the settling velocity and ${\it\Gamma}$ the shear rate, we apply the WKB method, a multiple scale technique. This analysis reveals the existence of a number density mode which travels due to the settling of the particles and a momentum mode which travels due to the cross-streamline momentum transport caused by settling. These modes are coupled at a turning point which occurs when the wavevector is nearly horizontal and the most amplified perturbations are those in which a momentum wave upstream of the turning point creates a downstream number density wave. The particle number density perturbations reach a finite, but large amplitude that persists after the wave becomes aligned with the velocity gradient. The growth of the amplitude of particle concentration and fluid velocity disturbances is characterised as a function of the wavenumber and Reynolds number ( $\mathit{Re}=U_{g}^{2}/{\it\Gamma}{\it\nu}$ ) using both asymptotic theory and a numerical solution of the linearised equations. 
    more » « less