skip to main content

Title: Multiple phase spirals suggest multiple origins in Gaia DR3

Gaia Data Release 2 revealed that the Milky Way contains significant indications of departures from equilibrium in the form of asymmetric features in the phase space density of stars in the Solar neighbourhood. One such feature is the z–vz phase spiral, interpreted as the response of the disc to the influence of a perturbation perpendicular to the disc plane, which could be external (e.g. a satellite) or internal (e.g. the bar or spiral arms). In this work, we use Gaia Data Release 3 to dissect the phase spiral by dividing the local data set into groups with similar azimuthal actions, Jϕ, and conjugate angles, θϕ, which selects stars on similar orbits and at similar orbital phases, thus having experienced similar perturbations in the past. These divisions allow us to explore areas of the Galactic disc larger than the surveyed region. The separation improves the clarity of the z–vz phase spiral and exposes changes to its morphology across the different action-angle groups. In particular, we discover a transition to two armed ‘breathing spirals’ in the inner Milky Way. We conclude that the local data contain signatures of not one, but multiple perturbations with the prospect to use their distinct properties more » to infer the properties of the interactions that caused them.

« less
; ; ;
Award ID(s):
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Page Range or eLocation-ID:
p. L7-L11
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In this work, we present two new ∼109 particle self-consistent simulations of the merger of a Sagittarius-like dwarf galaxy with a Milky Way (MW)-like disc galaxy. One model is a violent merger creating a thick disc, and a Gaia–Enceladus/Sausage-like remnant. The other is a highly stable disc which we use to illustrate how the improved phase space resolution allows us to better examine the formation and evolution of structures that have been observed in small, local volumes in the MW, such as the z−vz phase spiral and clustering in the vR−vϕ plane when compared to previous works. The local z−vz phase spirals are clearly linked to the global asymmetry across the disc: we find both 2-armed and 1-armed phase spirals, which are related to breathing and bending behaviours, respectively. Hercules-like moving groups are common, clustered in vR−vϕ in local data samples in the simulation. These groups migrate outwards from the inner galaxy, matching observed metallicity trends even in the absence of a galactic bar. We currently release the best-fitting ‘present-day’ merger snapshots along with the unperturbed galaxies for comparison.

    Understanding local stellar kinematic substructures in the solar neighbourhood helps build a complete picture of the formation of the Milky Way, as well as an empirical phase space distribution of dark matter that would inform detection experiments. We apply the clustering algorithm hdbscan on the Gaia early third data release to identify a list of stable clusters in velocity space and action-angle space by taking into account the measurement uncertainties and studying the stability of the clustering results. We find 1405 (497) stars in 23 (6) robust clusters in velocity space (action-angle space) that are consistently not associated with noise. We discuss the kinematic properties of these structures and study whether many of the small clusters belong to a similar larger cluster based on their chemical abundances. They are attributed to the known structures: the Gaia Sausage-Enceladus, the Helmi Stream, and globular cluster NGC 3201 are found in both spaces, while NGC 104 and the thick disc (Sequoia) are identified in velocity space (action-angle space). Although we do not identify any new structures, we find that the hdbscan member selection of already known structures is unstable to input kinematics of the stars when resampled within their uncertainties. We thereforemore »present the stable subset of local kinematic structures, which are consistently identified by the clustering algorithm, and emphasize the need to take into account error propagation during both the manual and automated identification of stellar structures, both for existing ones as well as future discoveries.

    « less
  3. Abstract Gaia DR2 has provided an unprecedented wealth of information about the positions and motions of stars in our Galaxy, and has highlighted the degree of disequilibria in the disc. As we collect data over a wider area of the disc it becomes increasingly appealing to start analysing stellar actions and angles, which specifically label orbit space, instead of their current phase space location. Conceptually, while $\bar{x}$ and $\bar{v}$ tell us about the potential and local interactions, grouping in action puts together stars that have similar frequencies and hence similar responses to dynamical effects occurring over several orbits. Grouping in actions and angles refines this further to isolate stars which are travelling together through space and hence have shared histories. Mixing these coordinate systems can confuse the interpretation. For example, it has been suggested that by moving stars to their guiding radius, the Milky Way spiral structure is visible as ridge-like overdensities in the Gaia data (Khoperskov et al. 2020). However, in this work, we show that these features are in fact the known kinematic moving groups, both in the Lz − φ and the vR − vφ planes. Using simulations we show how this distinction will become even more importantmore »as we move to a global view of the Milky Way. As an example, we show that the radial velocity wave seen in the Galactic disc in Gaia and APOGEE should become stronger in the action-angle frame, and that it can be reproduced by transient spiral structure.« less

    Understanding the assembly of our Galaxy requires us to also characterize the systems that helped build it. In this work, we accomplish this by exploring the chemistry of accreted halo stars from Gaia-Enceladus/Gaia-Sausage (GES) selected in the infrared from the Apache Point Observatory Galactic Evolution Experiment (APOGEE) Data Release 16. We use high resolution optical spectra for 62 GES stars to measure abundances in 20 elements spanning the α, Fe-peak, light, odd-Z, and notably, the neutron-capture groups of elements to understand their trends in the context of and in contrast to the Milky Way and other stellar populations. Using these derived abundances we find that the optical and the infrared abundances agree to within 0.15 dex except for O, Co, Na, Cu, and Ce. These stars have enhanced neutron-capture abundance trends compared to the Milky Way, and their [Eu/Mg] and neutron-capture abundance ratios (e.g. [Y/Eu], [Ba/Eu], [Zr/Ba], [La/Ba], and [Nd/Ba]) point to r-process enhancement and a delay in s-process enrichment. Their [α/Fe] trend is lower than the Milky Way trend for [Fe/H] > −1.5 dex, similar to previous studies of GES stars and consistent with the picture that these stars formed in a system with a lower rate ofmore »star formation. This is further supported by their depleted abundances in Ni, Na, and Cu abundances, again, similar to previous studies of low-α stars with accreted origins.

    « less

    The advent of Gaia has led to the discovery of nearly 300 elongated stellar associations (called ‘strings’) spanning hundreds of parsecs in length and mere tens of parsecs in width. These newfound populations present an excellent laboratory for studying the assembly process of the Milky Way thin disc. In this work, we use data from GALAH DR3 to investigate the chemical distributions and ages of 18 newfound stellar populations, 10 of which are strings and 8 of which are compact in morphology. We estimate the intrinsic abundance dispersions in [X/H] of each population and compare them with those of both their local fields and the open cluster (OC) M 67. We find that all but one of these groups are more chemically homogeneous than their local fields. Furthermore, half of the strings, namely Theias 139, 169, 216, 303, and 309, have intrinsic [X/H] dispersions that range between 0.01 and 0.07 dex in most elements, equivalent to those of many OCs. These results provide important new observational constraints on star formation and the chemical homogeneity of the local interstellar medium (ISM). We investigate each population’s Li and chemical clock abundances (e.g. [Sc/Ba], [Ca/Ba], [Ti/Ba], and [Mg/Y]) and find that the agesmore »suggested by chemistry generally support the isochronal ages in all but six structures. This work highlights the unique advantages that chemistry holds in the study of kinematically related stellar groups.

    « less