ABSTRACT Machine learning can play a powerful role in inferring missing line-of-sight velocities from astrometry in surveys such as Gaia. In this paper, we apply a neural network to Gaia Early Data Release 3 (EDR3) and obtain line-of-sight velocities and associated uncertainties for ∼92 million stars. The network, which takes as input a star’s parallax, angular coordinates, and proper motions, is trained and validated on ∼6.4 million stars in Gaia with complete phase-space information. The network’s uncertainty on its velocity prediction is a key aspect of its design; by properly convolving these uncertainties with the inferred velocities, we obtain accurate stellar kinematic distributions. As a first science application, we use the new network-completed catalogue to identify candidate stars that belong to the Milky Way’s most recent major merger, Gaia-Sausage-Enceladus (GSE). We present the kinematic, energy, angular momentum, and spatial distributions of the ∼450 000 GSE candidates in this sample, and also study the chemical abundances of those with cross matches to GALAH and APOGEE. The network’s predictive power will only continue to improve with future Gaia data releases as the training set of stars with complete phase-space information grows. This work provides a first demonstration of how to use machine learning to exploit high-dimensional correlations on data to infer line-of-sight velocities, and offers a template for how to train, validate, and apply such a neural network when complete observational data is not available.
more »
« less
The 3D Galactocentric Velocities of Kepler Stars: Marginalizing Over Missing Radial Velocities
Precise Gaia measurements of positions, parallaxes, and proper motions provide an opportunity to calculate 3D positions and 2D velocities (i.e., 5D phase-space) of Milky Way stars. Where available, spectroscopic radial velocity (RV) measurements provide full 6D phase-space information, however there are now and will remain many stars without RV measurements. Without an RV it is not possible to directly calculate 3D stellar velocities; however, one can infer 3D stellar velocities by marginalizing over the missing RV dimension. In this paper, we infer the 3D velocities of stars in the Kepler field in Cartesian Galactocentric coordinates (vx, vy, vz). We directly calculate velocities for around a quarter of all Kepler targets, using RV measurements available from the Gaia, LAMOST, and APOGEE spectroscopic surveys. Using the velocity distributions of these stars as our prior, we infer velocities for the remaining three quarters of the sample by marginalizing over the RV dimension. The median uncertainties on our inferred vx, vy, and vz velocities are around 4, 18, and 4 km/s, respectively. We provide 3D velocities for a total of 148,590 stars in the Kepler field. These 3D velocities could enable kinematic age-dating, Milky Way stellar population studies, and other scientific studies using the benchmark sample of well-studied Kepler stars. Although the methodology used here is broadly applicable to targets across the sky, our prior is specifically constructed from and for the Kepler field. Care should be taken to use a suitable prior when extending this method to other parts of the Galaxy.
more »
« less
- Award ID(s):
- 2001869
- PAR ID:
- 10468157
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 164
- Issue:
- 1
- ISSN:
- 0004-6256
- Page Range / eLocation ID:
- 25
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The vast majority of Milky Way stellar halo stars were likely accreted from a small number (<~3) of relatively large dwarf galaxy accretion events. However, the timing of these events is poorly constrained and predominantly relies on indirect dynamical mixing arguments or imprecise age measurements of stars associated with debris structures. Here, we aim to infer robust stellar ages for stars associated with galactic substructures to more directly constrain the merger history of the Galaxy. By combining kinematic, asteroseismic, and spectroscopic data where available, we infer stellar ages for a sample of 10 red giant stars that were kinematically selected to be within the stellar halo, a subset of which are associated with the Gaia–Enceladus–Sausage halo substructure, and compare their ages to 3 red giant stars in the Galactic disk. Despite systematic differences in both absolute and relative ages determined here, age rankings of stars in this sample are robust. Passing the same observable inputs to multiple stellar age determination packages, we measure a weighted average age for the Gaia–Enceladus–Sausage stars in our sample of 8+/-3 (stat.)+/-1 (sys.) Gyr. We also determine hierarchical ages using isochrones for the populations of Gaia–Enceladus–Sausage, in situ halo and disk stars, finding a Gaia–Enceladus–Sausage population age of 8.0+2.3-3.2 Gyr. Although we cannot distinguish hierarchical population ages of halo or disk structures with our limited data and sample of stars, this framework should allow a distinct characterization of Galactic substructures using larger stellar samples and additional data available in the near futuremore » « less
-
Abstract The dynamics of star-forming gas can be affected by many physical processes, such as turbulence, gravity, supernova explosions, and magnetic fields. In this paper, we investigate several nearby star-forming regions (Orion, Upper Sco, Taurus, and Perseus) for kinematic imprints of these influences on the newly formed stars. Using Gaia DR3 astrometry and APOGEE DR17 radial velocities, we compute first-order velocity structure functions (VSFs) of young stars in galactic Cartesian coordinates in both 6D (3D positions and 3D velocities) and 4D (3D positions and each 1D velocity) to identify signatures of turbulence and anisotropic motion. We also construct 3D and 1D radial velocity profiles to identify coherent expansion trends, and compare stellar proper motions to plane-of-sky magnetic field orientations in Taurus and Perseus. We find that the VSFs are mildly anisotropic, with slightly different amplitudes, slopes, or features in different directions in several groups, but in general, they are all consistent with Larson’s Relation at intermediate length scales, especially in less compact groups. In several cases, the VSFs exhibit features suggestive of local energy injection from supernovae. Radial velocity profiles reveal clear anisotropic expansion in multiple groups, with the most extreme cases corresponding to those with the most anisotropic VSFs. In Perseus, we find that the motions of young stars are preferentially perpendicular to the local magnetic field. We find multiple, overlapping causes in each group for the observed kinematics. Our findings support that young stars remember more than just the turbulent state of their natal clouds.more » « less
-
null (Ed.)Luminous hot stars ( M K s ≲ 0 mag and T eff ≳ 8000 K) dominate the stellar energy input to the interstellar medium throughout cosmological time, are used as laboratories to test theories of stellar evolution and multiplicity, and serve as luminous tracers of star formation in the Milky Way and other galaxies. Massive stars occupy well-defined loci in colour–colour and colour–magnitude spaces, enabling selection based on the combination of Gaia EDR3 astrometry and photometry and 2MASS photometry, even in the presence of substantive dust extinction. In this paper we devise an all-sky sample of such luminous OBA-type stars, which was designed to be complete rather than very pure, providing targets for spectroscopic follow-up with the SDSS-V survey. To estimate the purity and completeness of our catalogue, we derive stellar parameters for the stars in common with LAMOST DR6 and we compare the sample to other O and B-type star catalogues. We estimate ‘astro-kinematic’ distances by combining parallaxes and proper motions with a model for the expected velocity and density distribution of young stars; we show that this adds useful constraints on the distances and therefore luminosities of the stars. With these distances we map the spatial distribution of a more stringently selected subsample across the Galactic disc, and find it to be highly structured, with distinct over- and under-densities. The most evident over-densities can be associated with the presumed spiral arms of the Milky Way, in particular the Sagittarius-Carina and Scutum-Centaurus arms. Yet, the spatial picture of the Milky Way’s young disc structure emerging in this study is complex, and suggests that most young stars in our Galaxy ( t age < t dyn ) are not neatly organised into distinct spiral arms. The combination of the comprehensive spectroscopy to come from SDSS-V (yielding velocities, ages, etc.) with future Gaia data releases will be crucial in order to reveal the dynamical nature of the spiral arms themselves.more » « less
-
Abstract We present orbits for 24 binaries in the field of open cluster NGC 2516 (∼150 Myr) and 13 binaries in the field of open cluster NGC 2422 (∼130 Myr) using results from a multiyear radial-velocity (RV) survey of the cluster cores. Six of these systems are double-lined spectroscopic binaries. We fit these RV variable systems with orvara , a MCMC-based fitting program that models Keplerian orbits. We use precise stellar parallaxes and proper motions from Gaia EDR3 to determine cluster membership. We impose a barycentric RV prior on all cluster members; this significantly improves our orbital constraints. Two of our systems have periods between five and 15 days, the critical window in which tides efficiently damp orbital eccentricity. These binaries should be included in future analyses of circularization across similarly-aged clusters. We also find a relatively flat distribution of binary mass ratios, consistent with previous work. With the inclusion of TESS light curves for all available targets, we identity target 378–036252 as a new eclipsing binary. We also identify a field star whose secondary has a mass in the brown dwarf range, as well as two cluster members whose RVs suggest the presence of an additional companion. Our orbital fits will help constrain the binary fraction and binary properties across stellar age and across stellar environment.more » « less
An official website of the United States government

