skip to main content


Title: Knife-edge interferogram analysis for corrosive wear propagation at sharp edges

This paper presents a novel noncontact measurement and inspection method based on knife-edge diffraction theory for corrosive wear propagation monitoring at a sharp edge. The degree of corrosion on the sharp edge was quantitatively traced in process by knife-edge interferometry (KEI). The measurement system consists of a laser diode, an avalanche photodiode, and a linear stage for scanning. KEI utilizes the interferometric fringes projected on the measurement plane when the light is incident on a sharp edge. The corrosion propagation on sharp edges was characterized by analyzing the difference in the two interferometric fringes obtained from the control and measurement groups. By using the cross-correlation algorithm, the corrosion conditions on sharp edges were quantitatively quantified into two factors: lag and similarity for edge loss and edge roughness, respectively. The KEI sensor noise level was estimated at 0.03% in full scale. The computational approach to knife-edge diffraction was validated by experimental validation, and the computational error was evaluated at less than 1%. Two sets of razor blades for measurement and control groups were used. As a result, the lag will be increased at an edge loss ratio of 1.007/µm due to the corrosive wear, while the similarity will be decreased at a ratio of5.4×<#comment/>10−<#comment/>4/µ<#comment/>mwith respect to edge roughness change. Experimental results showed a good agreement with computational results.

 
more » « less
Award ID(s):
1855473
NSF-PAR ID:
10369456
Author(s) / Creator(s):
;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
60
Issue:
5
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 1373
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We demonstrate for the first time, to our knowledge, the occurrence of asixth-order exceptional point of degeneracy (EPD) in a realistic multimode optical photonic structure by using a modified periodic coupled-resonator optical waveguide (CROW) at the optical wavelengthλ<#comment/>e=1550nm. The sixth-order EPD is obtained in a CROW without the need of loss or gain, and such an EPD corresponds to a very special band edge of the periodic photonic structure where six eigenmodes coalesce, so we refer to it as the sixth-order degenerate band edge (6DBE). Moreover, we report a new scaling law of the quality factorQof an optical cavity made of such a periodic 6DBE-CROW with cavity length asQ∝<#comment/>N7, when operating near the 6DBE withNbeing the number of unit cells in the periodic finite-length CROW. Furthermore, we elaborate on the application of the 6DBE to ultralow-threshold lasers. We present a novel scaling law of the lasing threshold that scales asN−<#comment/>7when operating near the 6DBE. Also, we show the superiority of the threshold scaling of the 6DBE-CROW to the scaling of another CROW with the same size operating near a fourth-order EPD that is often referred to as the degenerate band edge (DBE). The lasing threshold scaling of the DBE-CROW laser is shown here for the first time to our knowledge. We also discuss the high sensitivity of the proposed 6DBE-CROW to perturbations, which may find applications in sensors, modulators, optical switches, nonlinear devices, andQ-switching cavities.

     
    more » « less
  2. Capable of imaging blood perfusion, oxygenation, and flow simultaneously at the microscopic level, multi-parametric photoacoustic microscopy (PAM) has quickly emerged as a powerful tool for studying hemodynamic and metabolic changes due to physiological stimulations or pathological processes. However, the low scanning speed poised by the correlation-based blood flow measurement impedes its application in studying rapid microvascular responses. To address this challenge, we have developed a new, to the best of our knowledge, multi-parametric PAM system. By extending the optical scanning range with a cylindrically focused ultrasonic transducer (focal zone,76µ<#comment/>m×<#comment/>4.5mm) for simultaneous acquisition of 500 B-scans, the new system is 112 times faster than our previous multi-parametric system that uses a spherically focused transducer (focal diameter, 40 µm) and enables high-resolution imaging of blood perfusion, oxygenation, and flow over an area of4.5×<#comment/>1mm2at a frame rate of 1 Hz. We have demonstrated the feasibility of this system in the living mouse ear. Further development of this system into reflection mode will enable real-time cortex-wide imaging of hemodynamics and metabolism in the mouse brain.

     
    more » « less
  3. The mid-IR spectroscopic properties ofEr3+doped low-phononCsCdCl3andCsPbCl3crystals grown by the Bridgman technique have been investigated. Using optical excitations at∼<#comment/>800nmand∼<#comment/>660nm, both crystals exhibited IR emissions at∼<#comment/>1.55,∼<#comment/>2.75,∼<#comment/>3.5, and∼<#comment/>4.5µ<#comment/>mat room temperature. The mid-IR emission at 4.5 µm, originating from the4I9/2→<#comment/>4I11/2transition, showed a long emission lifetime of∼<#comment/>11.6msforEr3+dopedCsCdCl3, whereasEr3+dopedCsPbCl3exhibited a shorter lifetime of∼<#comment/>1.8ms. The measured emission lifetimes of the4I9/2state were nearly independent of the temperature, indicating a negligibly small nonradiative decay rate through multiphonon relaxation, as predicted by the energy-gap law for low-maximum-phonon energy hosts. The room temperature stimulated emission cross sections for the4I9/2→<#comment/>4I11/2transition inEr3+dopedCsCdCl3andCsPbCl3were determined to be∼<#comment/>0.14×<#comment/>10−<#comment/>20cm2and∼<#comment/>0.41×<#comment/>10−<#comment/>20cm2, respectively. The results of Judd–Ofelt analysis are presented and discussed.

     
    more » « less
  4. Properly interpreting lidar (light detection and ranging) signal for characterizing particle distribution relies on a key parameter,χ<#comment/>p(π<#comment/>), which relates the particulate volume scattering function (VSF) at 180° (β<#comment/>p(π<#comment/>)) that a lidar measures to the particulate backscattering coefficient (bbp). However,χ<#comment/>p(π<#comment/>)has been seldom studied due to challenges in accurately measuringβ<#comment/>p(π<#comment/>)andbbpconcurrently in the field. In this study,χ<#comment/>p(π<#comment/>), as well as its spectral dependence, was re-examined using the VSFs measuredin situat high angular resolution in a wide range of waters.β<#comment/>p(π<#comment/>), while not measured directly, was inferred using a physically sound, well-validated VSF-inversion method. The effects of particle shape and internal structure on the inversion were tested using three inversion kernels consisting of phase functions computed for particles that are assumed as homogenous sphere, homogenous asymmetric hexahedra, or coated sphere. The reconstructed VSFs using any of the three kernels agreed well with the measured VSFs with a mean percentage difference<<#comment/>5%<#comment/>at scattering angles<<#comment/>170∘<#comment/>. At angles immediately near or equal to 180°, the reconstructedβ<#comment/>p(π<#comment/>)depends strongly on the inversion kernel.χ<#comment/>p(π<#comment/>)derived with the sphere kernels was smaller than those derived with the hexahedra kernel but consistent withχ<#comment/>p(π<#comment/>)estimated directly from high-spectral-resolution lidar andin situbackscattering sensor. The possible explanation was that the sphere kernels are able to capture the backscattering enhancement feature near 180° that has been observed for marine particles.χ<#comment/>p(π<#comment/>)derived using the coated sphere kernel was generally lower than those derived with the homogenous sphere kernel. Our result suggests thatχ<#comment/>p(π<#comment/>)is sensitive to the shape and internal structure of particles and significant error could be induced if a fixed value ofχ<#comment/>p(π<#comment/>)is to be used to interpret lidar signal collected in different waters. On the other hand,χ<#comment/>p(π<#comment/>)showed little spectral dependence.

     
    more » « less
  5. The ambition of this review is to provide an up-to-date synopsis of the state of 3D printing technology for optical and photonic components, to gauge technological advances, and to discuss future opportunities. While a range of approaches have been developed and some have been commercialized, no single approach can yet simultaneously achieve small detail and low roughness at large print volumes and speed using multiple materials. Instead, each approach occupies a niche where the components/structures that can be created fit within a relatively narrow range of geometries with limited material choices. For instance, the common Fused Deposition Modeling (FDM) approach is capable of large print volumes at relatively high speeds but lacks the resolution needed for small detail (><#comment/>100µ<#comment/>m) with low roughness (><#comment/>9µ<#comment/>m). At the other end of the spectrum, two-photon polymerization can achieve roughness (<<#comment/>15nm) and detail (<<#comment/>140nm) comparable to commercial molded and polished optics. However, the practical achievable print volume and speed are orders of magnitude smaller and slower than the FDM approach. Herein, we discuss the current state-of-the-art 3D printing approaches, noting the capability of each approach and prognosticate on future innovations that could close the gaps in performance.

     
    more » « less