Until recently, precise genome editing has been limited to a few organisms. The ability of Cas9 to generate double stranded DNA breaks at specific genomic sites has greatly expanded molecular toolkits in many organisms and cell types. Before CRISPR‐Cas9 mediated genome editing,
CRISPR/Cas (clustered regularly interspaced short palindromic repeats/CRISPR‐associated protein)‐mediated genome editing has revolutionized fundamental research and plant breeding. Beyond gene editing, CRISPR/Cas systems have been repurposed as a platform for programmable transcriptional regulation. Catalytically inactive Cas variants (dCas), when fused with transcriptional activation domains, allow for specific activation of any target gene in the genome without inducing DNA double‐strand breaks. CRISPR activation enables simultaneous activation of multiple genes, holding great promise in the identification of gene regulatory networks and rewiring of metabolic pathways. Here, we describe a simple protocol for constructing a dCas9‐mediated multiplexed gene activation system based on the CRISPR‐Act3.0 system. The resulting vectors are tested in rice protoplasts. © 2022 Wiley Periodicals LLC.
- PAR ID:
- 10369503
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P. patens was unique among plants in its ability to integrate DNA via homologous recombination. However, selection for homologous recombination events was required to obtain edited plants, limiting the types of editing that were possible. Now with CRISPR‐Cas9, molecular manipulations inP. patens have greatly expanded. This protocol describes a method to generate a variety of different genome edits. The protocol describes a streamlined method to generate the Cas9/sgRNA expression constructs, design homology templates, transform, and quickly genotype plants. © 2023 Wiley Periodicals LLC.Basic Protocol 1 : Constructing the Cas9/sgRNA transient expression vectorAlternate Protocol 1 : Shortcut to generating single and pooled Cas9/sgRNA expression vectorsBasic Protocol 2 : Designing the oligonucleotide‐based homology‐directed repair (HDR) templateAlternate Protocol 2 : Designing the plasmid‐based HDR templateBasic Protocol 3 : Inducing genome editing by transforming CRISPR vector intoP. patens protoplastsBasic Protocol 4 : Identifying edited plants. -
Abstract Dimorphic fungi in the genera
Blastomyces ,Histoplasma ,Coccidioides , andParacoccidioides are important human pathogens that affect human health in many countries throughout the world. Understanding the biology of these fungi is important for the development of effective treatments and vaccines. Gene editing is a critically important tool for research into these organisms. In recent years, gene targeting approaches employing RNA‐guided DNA nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated nuclease 9 (Cas9), have exploded in popularity. Here, we provide a detailed description of the steps involved in applying CRISPR/Cas9 technology to dimorphic fungi, withBlastomyces dermatitidis in particular as our model fungal pathogen. We discuss the design and construction of single guide RNA and Cas9‐expressing targeting vectors (including multiplexed vectors) as well as introduction of these plasmids intoBlastomyces usingAgrobacterium ‐mediated transformation. Finally, we cover the outcomes that may be expected in terms of gene‐editing efficiency and types of gene alterations produced. © 2020 Wiley Periodicals LLC.Basic Protocol 1 : Construction of CRISPR/Cas9 targeting vectorsSupport Protocol 1 : Choosing protospacers in the target geneBasic Protocol 2 :Agrobacterium ‐mediated transformation ofBlastomyces Support Protocol 2 : Preparation of electrocompetentAgrobacterium Support Protocol 3 : Preparation and recovery ofBlastomyces frozen stocks -
Abstract Among CRISPR-Cas genome editing systems,
Streptococcus pyogenes Cas9 (SpCas9), sourced from a human pathogen, is the most widely used. Here, through in silico data mining, we have established an efficient plant genome engineering system using CRISPR-Cas9 from probioticLactobacillus rhamnosus . We have confirmed the predicted 5’-NGAAA-3’ PAM via a bacterial PAM depletion assay and showcased its exceptional editing efficiency in rice, wheat, tomato, and Larix cells, surpassing LbCas12a, SpCas9-NG, and SpRY when targeting the identical sequences. In stable rice lines, LrCas9 facilitates multiplexed gene knockout through coding sequence editing and achieves gene knockdown via targeted promoter deletion, demonstrating high specificity. We have also developed LrCas9-derived cytosine and adenine base editors, expanding base editing capabilities. Finally, by harnessing LrCas9’s A/T-rich PAM targeting preference, we have created efficient CRISPR interference and activation systems in plants. Together, our work establishes CRISPR-LrCas9 as an efficient and user-friendly genome engineering tool for diverse applications in crops and beyond. -
Cas12a, also known as Cpf1, is a highly versatile CRISPR-Cas enzyme that has been widely used in genome editing. Unlike its well-known counterpart, Cas9, Cas12a has unique features that make it a highly efficient genome editing tool at AT-rich genomic regions. To enrich the CRISPR-Cas12a plant genome editing toolbox, we explored 17 novel Cas12a orthologs for their genome editing capabilities in plants. Out of them, Ev1Cas12a and Hs1Cas12a showed efficient multiplexed genome editing in rice and tomato protoplasts. Notably, Hs1Cas12a exhibited greater tolerance to lower temperatures. Moreover, Hs1Cas12a generated up to 87.5% biallelic editing in rice T0plants. Both Ev1Cas12a and Hs1Cas12a achieved effective editing in poplar T0plants, with up to 100% of plants edited, albeit with high chimerism. Taken together, the efficient genome editing demonstrated by Ev1Cas12a and Hs1Cas12a in both monocot and dicot plants highlights their potential as promising genome editing tools in plant species and beyond.
-
The Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein system (CRISPR/Cas) has recently become the most powerful tool available for genome engineering in various organisms. With efficient and proper expression of multiple guide RNAs (gRNAs), the CRISPR/Cas system is particularly suitable for multiplex genome editing. During the past several years, different CRISPR/Cas expression strategies, such as two-component transcriptional unit, single transcriptional unit, and bidirectional promoter systems, have been developed to efficiently express gRNAs as well as Cas nucleases. Significant progress has been made to optimize gRNA production using different types of promoters and RNA processing strategies such as ribozymes, endogenous RNases, and exogenous endoribonuclease (Csy4). Besides being constitutively and ubiquitously expressed, inducible and spa- tiotemporal regulations of gRNA expression have been demonstrated using inducible, tissue-specific, and/or synthetic promoters for specific research purposes. Most recently, the emergence of CRISPR/Cas ribonucleoprotein delivery methods, such as engineered nanoparticles, further revolutionized trans- gene-free and multiplex genome editing. In this review, we discuss current strategies and future per- spectives for efficient expression and engineering of gRNAs with a goal to facilitate CRISPR/Cas-based multiplex genome editing.more » « less