skip to main content

Title: Substructure detection reanalysed: dark perturber shown to be a line-of-sight halo

Observations of structure at subgalactic scales are crucial for probing the properties of dark matter, which is the dominant source of gravity in the universe. It will become increasingly important for future surveys to distinguish between line-of-sight haloes and subhalos to avoid wrong inferences on the nature of dark matter. We reanalyse a subgalactic structure (in lens JVAS B1938 + 666) that has been previously found using the gravitational imaging technique in galaxy-galaxy lensing systems. This structure has been assumed to be a satellite in the halo of the main lens galaxy. We fit the redshift of the perturber of the system as a free parameter, using the multiplane thin-lens approximation, and find that the redshift of the perturber is $z_\mathrm{int} = 1.42^{+0.10}_{-0.15}$ (with a main lens redshift of z = 0.881). Our analysis indicates that this structure is more massive than the previous result by an order of magnitude. This constitutes the first dark perturber shown to be a line-of-sight halo with a gravitational lensing method.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 4391-4401
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The presence of an invisible substructure has previously been detected in the gravitational lens galaxy SDSSJ0946+1006 through its perturbation of the lensed images. Using flexible models for the main halo and the subhalo perturbation, we demonstrate that the subhalo has an extraordinarily high central density and steep density slope. We robustly infer the subhalo’s projected mass within 1 kpc to be ∼2–3.7 × 109 M⊙ at >95 per cent CL for all our lens models, while the average log-slope of the subhalo’s projected density profile over the radial range 0.75–1.25 kpc is constrained to be steeper than isothermal (γ2D ≲ −1). By modeling the subhalo light, we infer a conservative upper bound on its luminosity LV < 1.2 × 108L⊙ at 95 per cent CL that shows that the perturber is dark matter dominated. We analyse lensing galaxy analogues in the Illustris TNG100-1 simulation over many lines of sight, and find hundreds of subhalos that achieve a mass within 1 kpc ≳ 2 × 109M⊙. However, less than 1 per cent of the mock observations yield a log-slope steep enough to be consistent with our lensing models, and they all have stellar masses exceeding that allowed by observations by an order of magnitude or more. We conclude that the presence of such a dark highly concentrated subhalo is unexpected in a Lambda cold dark matter universe. While it remains to be determined whether this tension can be reduced by adding more complexity to the primary lens model, it is not significantly alleviated if the perturber is assumed to be a LOS structure, rather than a subhalo. 
    more » « less
  2. Abstract The mass-concentration relation of dark matter halos reflects the assembly history of objects in hierarchical structure formation scenarios, and depends on fundamental quantities in cosmology such as the slope of the primordial matter power-spectrum. This relation is unconstrained by observations on sub-galactic scales. We derive the first measurement of the mass-concentration relation using the image positions and flux ratios from eleven quadruple-image strong gravitational lenses (quads) in the mass range 106 − 1010M⊙, assuming cold dark matter. We model both subhalos and line of sight halos, finite-size background sources, and marginalize over nuisance parameters describing the lens macromodel. We also marginalize over the the logarithmic slope and redshift evolution of the mass-concentration relation, using flat priors that encompass the range of theoretical uncertainty in the literature. At z = 0, we constrain the concentration of 108M⊙ halos $c=12_{-5}^{+6}$ at $68 \%$ CI, and $c=12_{-9}^{+15}$ at $95 \%$ CI. For a 107M⊙ halo, we obtain $68 \%$ ($95 \%$) constraints $c=15_{-8}^{+9}$ ($c=15_{-11}^{+18}$), while for 109M⊙ halos $c=10_{-4}^{+7}$ ($c=10_{-7}^{+14}$). These results are consistent with the theoretical predictions from mass-concentration relations in the literature, and establish strong lensing by galaxies as a powerful probe of halo concentrations on sub-galactic scales across cosmological distance. 
    more » « less

    The mass distribution in massive elliptical galaxies encodes their evolutionary history, thus providing an avenue to constrain the baryonic astrophysics in their evolution. The power-law assumption for the radial mass profile in ellipticals has been sufficient to describe several observables to the noise level, including strong lensing and stellar dynamics. In this paper, we quantitatively constrained any deviation, or the lack thereof, from the power-law mass profile in massive ellipticals through joint lensing–dynamics analysis of a large statistical sample with 77 galaxy–galaxy lens systems. We performed an improved and uniform lens modelling of these systems from archival Hubble Space Telescope imaging using the automated lens modelling pipeline dolphin. We combined the lens model posteriors with the stellar dynamics to constrain the deviation from the power law after accounting for the line-of-sight lensing effects, a first for analyses on galaxy–galaxy lenses. We find that the Sloan Lens ACS Survey lens galaxies with a mean redshift of 0.2 are consistent with the power-law profile within 1.1σ (2.8σ) and the Strong Lensing Legacy Survey lens galaxies with a mean redshift of 0.6 are consistent within 0.8σ (2.1σ), for a spatially constant (Osipkov–Merritt) stellar anisotropy profile. We adopted the spatially constant anisotropy profile as our baseline choice based on previous dynamical observables of local ellipticals. However, spatially resolved stellar kinematics of lens galaxies are necessary to differentiate between the two anisotropy models. Future studies will use our lens models to constrain the mass distribution individually in the dark matter and baryonic components.

    more » « less
  4. null (Ed.)
    ABSTRACT A promising route for revealing the existence of dark matter structures on mass scales smaller than the faintest galaxies is through their effect on strong gravitational lenses. We examine the role of local, lens-proximate clustering in boosting the lensing probability relative to contributions from substructure and unclustered line-of-sight (LOS) haloes. Using two cosmological simulations that can resolve halo masses of Mhalo ≃ 109 M⊙ (in a simulation box of length $L_{\rm box}{\sim }100\, {\rm Mpc}$) and 107 M⊙ ($L_{\rm box}\sim 20\, {\rm Mpc}$), we demonstrate that clustering in the vicinity of the lens host produces a clear enhancement relative to an assumption of unclustered haloes that persists to $\gt 20\, R_{\rm vir}$. This enhancement exceeds estimates that use a two-halo term to account for clustering, particularly within $2-5\, R_{\rm vir}$. We provide an analytic expression for this excess, clustered contribution. We find that local clustering boosts the expected count of 109 M⊙ perturbing haloes by $\sim \! 35{{\ \rm per\ cent}}$ compared to substructure alone, a result that will significantly enhance expected signals for low-redshift (zl ≃ 0.2) lenses, where substructure contributes substantially compared to LOS haloes. We also find that the orientation of the lens with respect to the line of sight (e.g. whether the line of sight passes through the major axis of the lens) can also have a significant effect on the lensing signal, boosting counts by an additional $\sim 50{{\ \rm per\ cent}}$ compared to a random orientations. This could be important if discovered lenses are biased to be oriented along their principal axis. 
    more » « less

    We introduce an analytic surface density profile for dark matter haloes that accurately reproduces the structure of simulated haloes of mass Mvir = 107–1011 M⊙, making it useful for modelling line-of-sight (LOS) perturbers in strong gravitational lensing models. The two-parameter function has an analytic deflection potential and is more accurate than the projected Navarro, Frenk, and White profile commonly adopted at this mass scale for perturbers, especially at the small radii of most relevant for lensing perturbations. Using a characteristic radius, R−1, where the log slope of surface density is equal to −1, and an associated surface density, Σ−1, we can represent the expected lensing signal from LOS haloes statistically, for an ensemble of halo orientations, using a distribution of projected concentration parameters, $\mathcal {C}_{\rm vir} := r_{\rm vir}/ R_{-1}$. Though an individual halo can have a projected concentration that varies with orientation with respect to the observer, the range of projected concentrations correlates with the usual three-dimensional halo concentration in a way that enables ease of use.

    more » « less