- Publication Date:
- NSF-PAR ID:
- 10334136
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 507
- Issue:
- 2
- Page Range or eLocation-ID:
- 1662 to 1683
- ISSN:
- 0035-8711
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT The free-streaming length of dark matter depends on fundamental dark matter physics, and determines the abundance and concentration of dark matter haloes on sub-galactic scales. Using the image positions and flux ratios from eight quadruply imaged quasars, we constrain the free-streaming length of dark matter and the amplitude of the subhalo mass function (SHMF). We model both main deflector subhaloes and haloes along the line of sight, and account for warm dark matter free-streaming effects on the mass function and mass–concentration relation. By calibrating the scaling of the SHMF with host halo mass and redshift using a suite of simulated haloes, we infer a global normalization for the SHMF. We account for finite-size background sources, and marginalize over the mass profile of the main deflector. Parametrizing dark matter free-streaming through the half-mode mass mhm, we constrain the thermal relic particle mass mDM corresponding to mhm. At $95 \, {\rm per\, cent}$ CI: mhm < 107.8 M⊙ ($m_{\rm {DM}} \gt 5.2 \ \rm {keV}$). We disfavour $m_{\rm {DM}} = 4.0 \,\rm {keV}$ and $m_{\rm {DM}} = 3.0 \,\rm {keV}$ with likelihood ratios of 7:1 and 30:1, respectively, relative to the peak of the posterior distribution. Assuming cold dark matter, we constrainmore »
-
ABSTRACT Core formation and runaway core collapse in models with self-interacting dark matter (SIDM) significantly alter the central density profiles of collapsed haloes. Using a forward modelling inference framework with simulated data-sets, we demonstrate that flux ratios in quadruple image strong gravitational lenses can detect the unique structural properties of SIDM haloes, and statistically constrain the amplitude and velocity dependence of the interaction cross-section in haloes with masses between 106 and 1010 M⊙. Measurements on these scales probe self-interactions at velocities below $30 \ \rm {km} \ \rm {s^{-1}}$, a relatively unexplored regime of parameter space, complimenting constraints at higher velocities from galaxies and clusters. We cast constraints on the amplitude and velocity dependence of the interaction cross-section in terms of σ20, the cross-section amplitude at $20 \ \rm {km} \ \rm {s^{-1}}$. With 50 lenses, a sample size available in the near future, and flux ratios measured from spatially compact mid-IR emission around the background quasar, we forecast $\sigma _{20} \lt 11\rm {\small {--}}23 \ \rm {cm^2} \rm {g^{-1}}$ at $95 {{\ \rm per\ cent}}$ CI, depending on the amplitude of the subhalo mass function, and assuming cold dark matter (CDM). Alternatively, if $\sigma _{20} = 19.2 \ \rmmore »
-
ABSTRACT We derive a new mass estimator that relies on internal proper motion measurements of dispersion-supported stellar systems, one that is distinct and complementary to existing estimators for line-of-sight velocities. Starting with the spherical Jeans equation, we show that there exists a radius where the mass enclosed depends only on the projected tangential velocity dispersion, assuming that the anisotropy profile slowly varies. This is well-approximated at the radius where the log-slope of the stellar tracer profile is −2: r−2. The associated mass is $M(r_{-2}) = 2 G^{-1} \langle \sigma _{\mathcal {T}}^{2}\rangle ^{*} r_{-2}$ and the circular velocity is $V^{2}({r_{-2}}) = 2\langle \sigma _{\mathcal {T}}^{2}\rangle ^{*}$. For a Plummer profile r−2 ≃ 4Re/5. Importantly, r−2 is smaller than the characteristic radius for line-of-sight velocities derived by Wolf et al. Together, the two estimators can constrain the mass profiles of dispersion-supported galaxies. We illustrate its applicability using published proper motion measurements of dwarf galaxies Draco and Sculptor, and find that they are consistent with inhabiting cuspy NFW subhaloes of the kind predicted in CDM but we cannot rule out a core. We test our combined mass estimators against previously published, non-spherical cosmological dwarf galaxy simulations done in both cold dark matter (CDM; naturallymore »
-
ABSTRACT We analyse strongly lensed images in eight galaxy clusters to measure their dark matter density profiles in the radial region between 10 kpc and 150 kpc, and use this to constrain the self-interaction cross-section of dark matter (DM) particles. We infer the mass profiles of the central DM haloes, bright central galaxies, key member galaxies, and DM subhaloes for the member galaxies for all eight clusters using the qlens code. The inferred DM halo surface densities are fit to a self-interacting dark matter model, which allows us to constrain the self-interaction cross-section over mass σ/m. When our full method is applied to mock data generated from two clusters in the Illustris-TNG simulation, we find results consistent with no dark matter self-interactions as expected. For the eight observed clusters with average relative velocities of $1458_{-81}^{+80}$ km s−1, we infer $\sigma /m = 0.082_{-0.021}^{+0.027} \rm cm^2\, g^{ -1}$ and $\sigma /m \lt 0.13~ \rm cm^2\, g^{ -1}$ at the 95 per cent confidence level.
-
ABSTRACT We demonstrate that the perturbations of strongly lensed images by low-mass dark matter subhaloes are significantly impacted by the concentration of the perturbing subhalo. For subhalo concentrations expected in Lambda cold dark matter (ΛCDM), significant constraints on the concentration can be obtained at Hubble Space Telescope (HST) resolution for subhaloes with masses larger than about $10^{10}\, {\rm M}_\odot$. Constraints are also possible for lower mass subhaloes, if their concentrations are higher than the expected scatter in CDM. We also find that the concentration of lower mass perturbers down to $\sim 10^8\, {\rm M}_\odot$ can be well constrained with a resolution of ∼0.01 arcsec, which is achievable with long-baseline interferometry. Subhalo concentration also plays a critical role in the detectability of a perturbation, such that only high-concentration perturbers with mass $\lesssim 10^9\, {\rm M}_\odot$ are likely to be detected at HST resolution. If scatter in the ΛCDM mass–concentration relation is not accounted for during lens modelling, the inferred subhalo mass can be biased by up to a factor of 3 (6) for subhaloes of mass $10^9 \, {\rm M}_\odot \,(10^{10} \, {\rm M}_\odot$); this bias can be eliminated if one varies both mass and concentration during lens fitting. Alternatively, onemore »