skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identification of missing hierarchical relations in the vaccine ontology using acquired term pairs
Abstract BackgroundThe Vaccine Ontology (VO) is a biomedical ontology that standardizes vaccine annotation. Errors in VO will affect a multitude of applications that it is being used in. Quality assurance of VO is imperative to ensure that it provides accurate domain knowledge to these downstream tasks. Manual review to identify and fix quality issues (such as missing hierarchical is-a relations) is challenging given the complexity of the ontology. Automated approaches are highly desirable to facilitate the quality assurance of VO. MethodsWe developed an automated lexical approach that identifies potentially missingis-arelations in VO. First, we construct two types of VO concept-pairs: (1) linked; and (2) unlinked. Each concept-pair further derives an Acquired Term Pair (ATP) based on their lexical features. If the same ATP is obtained by a linked concept-pair and an unlinked concept-pair, this is considered to indicate a potentially missingis-arelation between the unlinked pair of concepts. ResultsApplying this approach on the 1.1.192 version of VO, we were able to identify 232 potentially missingis-arelations. A manual review by a VO domain expert on a random sample of 70 potentially missingis-arelations revealed that 65 of the cases were valid missingis-arelations in VO (a precision of 92.86%). ConclusionsThe results indicate that our approach is highly effective in identifying missingis-arelation in VO.  more » « less
Award ID(s):
2047001
PAR ID:
10369522
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Biomedical Semantics
Volume:
13
Issue:
1
ISSN:
2041-1480
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gene Ontology (GO) is widely used in the biological domain. It is the most comprehensive ontology providing formal representation of gene functions (GO concepts) and relations between them. However, unintentional quality defects (e.g. missing or erroneous relations) in GO may exist due to the large size of GO concepts and complexity of GO structures. Such quality defects would impact the results of GO-based analyses and applications. In this work, we introduce a novel evidence-based lexical pattern approach for quality assurance of GO relations. We leverage two layers of evidence to suggest potentially missing relations in GO as follows. We first utilize related concept pairs (i.e. existing relations) in GO to extract relationship-specific lexical patterns, which serve as the first layer evidence to automatically suggest potentially missing relations between unrelated concept pairs. For each suggested missing relation, we further identify two other existing relations as the second layer of evidence that resemble the difference between the missing relation and the existing relation based on which the missing relation is suggested. Applied to the 15 December 2021 release of GO, this approach suggested a total of 866 potentially missing relations. Local domain experts evaluated the entire set of potentially missing relations, and identified 821 as missing relations and 45 indicate erroneous existing relations. We submitted these findings to the GO consortium for further validation and received encouraging feedback. These indicate that our evidence-based approach can be utilized to uncover missing relations and erroneous existing relations in GO. 
    more » « less
  2. Abstract ObjectiveSNOMED CT is the largest clinical terminology worldwide. Quality assurance of SNOMED CT is of utmost importance to ensure that it provides accurate domain knowledge to various SNOMED CT-based applications. In this work, we introduce a deep learning-based approach to uncover missing is-a relations in SNOMED CT. Materials and MethodsOur focus is to identify missing is-a relations between concept-pairs exhibiting a containment pattern (ie, the set of words of one concept being a proper subset of that of the other concept). We use hierarchically related containment concept-pairs as positive instances and hierarchically unrelated containment concept-pairs as negative instances to train a model predicting whether an is-a relation exists between 2 concepts with containment pattern. The model is a binary classifier leveraging concept name features, hierarchical features, enriched lexical attribute features, and logical definition features. We introduce a cross-validation inspired approach to identify missing is-a relations among all hierarchically unrelated containment concept-pairs. ResultsWe trained and applied our model on the Clinical finding subhierarchy of SNOMED CT (September 2019 US edition). Our model (based on the validation sets) achieved a precision of 0.8164, recall of 0.8397, and F1 score of 0.8279. Applying the model to predict actual missing is-a relations, we obtained a total of 1661 potential candidates. Domain experts performed evaluation on randomly selected 230 samples and verified that 192 (83.48%) are valid. ConclusionsThe results showed that our deep learning approach is effective in uncovering missing is-a relations between containment concept-pairs in SNOMED CT. 
    more » « less
  3. null (Ed.)
    Incompleteness of ontologies affects the quality of downstream ontology-based applications. In this paper, we introduce a novel lexical-based approach to automatically detect potentially missing hierarchical IS-A relations in SNOMED CT. We model each concept with an enriched set of lexical features, by leveraging words and noun phrases in the name of the concept itself and the concept's ancestors. Then we perform subset inclusion checking to suggest potentially missing IS-A relations between concepts. We applied our approach to the September 2017 release of SNOMED CT (US edition) which suggested a total of 38,615 potentially missing IS-A relations. For evaluation, a domain expert reviewed a random sample of 100 missing IS-A relations selected from the "Clinical finding" sub-hierarchy, and confirmed 90 are valid (a precision of 90%). Additional review of invalid suggestions further revealed incorrect existing IS-A relations. Our results demonstrate that systematic analysis of the enriched lexical features of concepts is an effective approach to identify potentially missing hierarchical IS-A relations in SNOMED CT. 
    more » « less
  4. Abstract BackgroundAs biomedical knowledge is rapidly evolving, concept enrichment of biomedical terminologies is an active research area involving automatic identification of missing or new concepts. Previously, we prototyped a lexical-based formal concept analysis (FCA) approach in which concepts were derived by intersecting bags of words, to identify potentially missing concepts in the National Cancer Institute (NCI) Thesaurus. However, this prototype did not handle concept naming and positioning. In this paper, we introduce a sequenced-based FCA approach to identify potentially missing concepts, supporting concept naming and positioning. MethodsWe consider the concept name sequences as FCA attributes to construct the formal context. The concept-forming process is performed by computing the longest common substrings of concept name sequences. After new concepts are formalized, we further predict their potential positions in the original hierarchy by identifying their supertypes and subtypes from original concepts. Automated validation via external terminologies in the Unified Medical Language System (UMLS) and biomedical literature in PubMed is performed to evaluate the effectiveness of our approach. ResultsWe applied our sequenced-based FCA approach to all the sub-hierarchies underDisease or Disorderin the NCI Thesaurus (19.08d version) and five sub-hierarchies underClinical FindingandProcedurein the SNOMED CT (US Edition, March 2020 release). In total, 1397 potentially missing concepts were identified in the NCI Thesaurus and 7223 in the SNOMED CT. For NCI Thesaurus, 85 potentially missing concepts were found in external terminologies and 315 of the remaining 1312 appeared in biomedical literature. For SNOMED CT, 576 were found in external terminologies and 1159 out of the remaining 6647 were found in biomedical literature. ConclusionOur sequence-based FCA approach has shown the promise for identifying potentially missing concepts in biomedical terminologies. 
    more » « less
  5. null (Ed.)
    Abstract Objective The Unified Medical Language System (UMLS) integrates various source terminologies to support interoperability between biomedical information systems. In this article, we introduce a novel transformation-based auditing method that leverages the UMLS knowledge to systematically identify missing hierarchical IS-A relations in the source terminologies. Materials and Methods Given a concept name in the UMLS, we first identify its base and secondary noun chunks. For each identified noun chunk, we generate replacement candidates that are more general than the noun chunk. Then, we replace the noun chunks with their replacement candidates to generate new potential concept names that may serve as supertypes of the original concept. If a newly generated name is an existing concept name in the same source terminology with the original concept, then a potentially missing IS-A relation between the original and the new concept is identified. Results Applying our transformation-based method to English-language concept names in the UMLS (2019AB release), a total of 39 359 potentially missing IS-A relations were detected in 13 source terminologies. Domain experts evaluated a random sample of 200 potentially missing IS-A relations identified in the SNOMED CT (U.S. edition) and 100 in Gene Ontology. A total of 173 of 200 and 63 of 100 potentially missing IS-A relations were confirmed by domain experts, indicating that our method achieved a precision of 86.5% and 63% for the SNOMED CT and Gene Ontology, respectively. Conclusions Our results showed that our transformation-based method is effective in identifying missing IS-A relations in the UMLS source terminologies. 
    more » « less