skip to main content


Title: Controls on Larsen C Ice Shelf Retreat From a 60‐Year Satellite Data Record
Abstract

Rapid retreat of the Larsen A and B ice shelves has provided important clues about the ice shelf destabilization processes. The Larsen C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, may also be vulnerable to future collapse in a warming climate. Here, we utilize multisource satellite images collected over 1963–2020 to derive multidecadal time series of ice front, flow velocities, and critical rift features over Larsen C, with the aim of understanding the controls on its retreat. We complement these observations with modeling experiments using the Ice‐sheet and Sea‐level System Model to examine how front geometry conditions and mechanical weakening due to rifts affect ice shelf dynamics. Over the past six decades, Larsen C lost over 20% of its area, dominated by rift‐induced tabular iceberg calving. The Bawden Ice Rise and Gipps Ice Rise are critical areas for rift formation, through their impact on the longitudinal deviatoric stress field. Mechanical weakening around Gipps Ice Rise is found to be an important control on localized flow acceleration and the propagation of two rifts that caused a major calving event in 2017. Capturing the time‐varying effects of rifts on ice rigidity in ice shelf models is essential for making realistic predictions of ice shelf flow dynamics and instability. In the context of the Larsen A and Larsen B collapses, we infer a chronology of destabilization processes for embayment‐confined ice shelves, which provides a useful framework for understanding the historical and future destabilization of Antarctic ice shelves.

 
more » « less
Award ID(s):
1738934
PAR ID:
10369529
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Volume:
127
Issue:
3
ISSN:
2169-9003
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The calving of A‐68, the 5,800‐km2, 1‐trillion‐ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice‐shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large‐scale modifications to Southern Ocean ecosystems and continental ice movements, with global‐scale implications. The thinning and rate of future ice‐shelf demise is notoriously unpredictable, but models suggest increased shelf‐melt and calving will become more common. To date, little is known about sub‐ice‐shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice‐shelf melt, volume loss, retreat, and calving, (b) ice‐shelf‐associated ecosystems through sub‐ice, sediment‐core, and pre‐collapse and post‐collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps.

    This article is categorized under:

    Climate, Ecology, and Conservation > Modeling Species and Community Interactions

     
    more » « less
  2. Abstract. Many floating ice shelves in Antarctica buttress the ice streams feeding them, thereby reducing the discharge of icebergs into the ocean. The rate at which ice shelves calve icebergs and how fast they flow determines whether they advance, retreat, or remain stable, exerting a first-order control on ice discharge. To parameterize calving within ice sheet models, several empirical and physical calving “laws” have been proposed in the past few decades. Such laws emphasize dissimilar features, including along- and across-flow strain rates (the eigencalving law), a fracture yield criterion (the von Mises law), longitudinal stretching (the crevasse depth law), and a simple ice thickness threshold (the minimum thickness law), among others. Despite the multitude of established calving laws, these laws remain largely unvalidated for the Antarctic Ice Sheet, rendering it difficult to assess the broad applicability of any given law in Antarctica. We address this shortcoming through a set of numerical experiments that evaluate existing calving laws for ten ice shelves around the Antarctic Ice Sheet. We utilize the Ice-sheet and Sea-level System Model (ISSM) and implement four calving laws under constant external forcing, calibrating the free parameter of each of these calving laws by assuming that the current position of the ice front is in steady state and finding the set of parameters that best achieves this position over a simulation of 200 years. We find that, in general, the eigencalving and von Mises laws best reproduce observed calving front positions under the steady state position assumption. These results will streamline future modeling efforts of Antarctic ice shelves by better informing the relevant physics of Antarctic-style calving on a shelf-by-shelf basis.

     
    more » « less
  3. Abstract

    Increasing surface melt has been implicated in the collapse of several Antarctic ice shelves over the last few decades, including the collapse of Larsen B Ice Shelf over a period of just a few weeks in 2002. The speed at which an ice shelf disintegrates strongly determines the subsequent loss of grounded ice and sea level rise, but the controls on collapse speed are not well understood. Here we show, using a novel cellular automaton model, that there is an intrinsic speed limit on ice shelf collapse through cascades of interacting melt pond hydrofracture events. Though collapse speed increases with the area of hydrofracture influence, the typical flexural length scales of Antarctic ice shelves ensure that hydrofracture interactions remain localized. We argue that the speed at which Larsen B Ice Shelf collapsed was caused by a season of anomalously high surface meltwater production.

     
    more » « less
  4. Abstract

    Tabular calving events occur from Antarctica's large ice shelves only every few decades, and are preceded by rift propagation. We used high‐resolution imagery and ICESat‐2 data to determine the propagation rates for the three active rifts on Amery Ice Shelf (AIS; T1, T2, and E3) and observe the calving of D‐28 on September 25, 2019 along T1. AIS front advance accelerated downstream of T1 in the years before calving, possibly increasing stress at the rift tip. T1 experienced significant acceleration for 12 days before calving, coinciding with a jump in propagation of E3. ICESat‐2's high resolution and repeat acquisitions every 91 days allowed for analysis of the ice front before and after calving, and rift detection where it was not visible in imagery as a ∼1 m surface depression, suggesting that it propagates as a basal fracture. Our results show that ICESat‐2 can provide process‐scale information about iceberg calving.

     
    more » « less
  5. Rifts are full-thickness fractures that propagate laterally across an ice shelf. They cause ice-shelf weakening and calving of tabular icebergs, and control the initial size of calved icebergs. Here, we present a joint inverse and forward computational modeling framework to capture rifting by combining the vertically integrated momentum balance and anisotropic continuum damage mechanics formulations. We incorporate rift–flank boundary processes to investigate how the rift path is influenced by the pressure on rift–flank walls from seawater, contact between flanks, and ice mélange that may also transmit stress between flanks. To illustrate the viability of the framework, we simulate the final 2 years of rift propagation associated with the calving of tabular iceberg A68 in 2017. We find that the rift path can change with varying ice mélange conditions and the extent of contact between rift flanks. Combinations of parameters associated with slower rift widening rates yield simulated rift paths that best match observations. Our modeling framework lays the foundation for robust simulation of rifting and tabular calving processes, which can enable future studies on ice-sheet–climate interactions, and the effects of ice-shelf buttressing on land ice flow. 
    more » « less