skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Molecular dynamics inferred transfer learning models for finite‐strain hyperelasticity of monoclinic crystals: Sobolev training and validations against physical constraints
Abstract We present a machine learning framework to train and validate neural networks to predict the anisotropic elastic response of a monoclinic organic molecular crystal known as ‐HMX in the geometrical nonlinear regime. A filtered molecular dynamic (MD) simulations database is used to train neural networks with a Sobolev norm that uses the stress measure and a reference configuration to deduce the elastic stored free energy functional. To improve the accuracy of the elasticity tangent predictions originating from the learned stored free energy, a transfer learning technique is used to introduce additional tangential constraints from the data while necessary conditions (e.g., strong ellipticity, crystallographic symmetry) for the correctness of the model are either introduced as additional physical constraints or incorporated in the validation tests. Assessment of the neural networks is based on (1) the accuracy with which they reproduce the bottom‐line constitutive responses predicted by MD, (2) the robustness of the models measured by detailed examination of their stability and uniqueness, and (3) the admissibility of the predicted responses with respect to mechanics principles in the finite‐deformation regime. We compare the training efficiency of the neural networks under different Sobolev constraints and assess the accuracy and robustness of the models against MD benchmarks for ‐HMX.  more » « less
Award ID(s):
1846875 1940203
PAR ID:
10369616
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal for Numerical Methods in Engineering
Volume:
123
Issue:
17
ISSN:
0029-5981
Format(s):
Medium: X Size: p. 3922-3949
Size(s):
p. 3922-3949
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We used deep-learning-based models to automatically obtain elastic moduli from resonant ultrasound spectroscopy (RUS) spectra, which conventionally require user intervention of published analysis codes. By strategically converting theoretical RUS spectra into their modulated fingerprints and using them as a dataset to train neural network models, we obtained models that successfully predicted both elastic moduli from theoretical test spectra of an isotropic material and from a measured steel RUS spectrum with up to 9.6% missing resonances. We further trained modulated fingerprint-based models to resolve RUS spectra from yttrium–aluminum-garnet (YAG) ceramic samples with three elastic moduli. The resulting models were capable of retrieving all three elastic moduli from spectra with a maximum of 26% missing frequencies. In summary, our modulated fingerprint method is an efficient tool to transform raw spectroscopy data and train neural network models with high accuracy and resistance to spectra distortion. 
    more » « less
  2. Neural Network potentials are developed which accurately make and break bonds for use in molecular simulations. We report a neural network potential that can describe the potential energy surface for carbon–carbon bond dissociation with less than 1 kcal mol−1 error compared to complete active space second-order perturbation theory (CASPT2), and maintains this accuracy for both the minimum energy path and molecular dynamic calculations up to 2000 K. We utilize a transfer learning algorithm to develop neural network potentials to generate potential energy surfaces; this method aims to use the minimum amount of CASPT2 data on small systems to train neural network potentials while maintaining excellent transferability to larger systems. First, we generate homolytic carbon–carbon bond dissociation data of small size alkanes with density functional theory (DFT) energies to train the potentials to accurately predict bond dissociation at the DFT level. Then, using transfer learning, we retrained the neural network potential to the CASPT2 level of accuracy. We demonstrate that the neural network potential only requires bond dissociation data of a few small alkanes to accurately predict bond dissociation energy in larger alkanes. We then perform additional training on molecular dynamic simulations to refine our neural network potentials to obtain high accuracy for general use in molecular simulation. This training algorithm is generally applicable to any type of bond or any level of theory and will be useful for the generation of new reactive neural network potentials. 
    more » « less
  3. Nonadiabatic molecular dynamics (NA-MD) is a powerful tool to model far-from-equilibrium processes, such as photochemical reactions and charge transport. NA-MD application to condensed phase has drawn tremendous attention recently for development of next-generation energy and optoelectronic materials. Studies of condensed matter allow one to employ efficient computational tools, such as density functional theory (DFT) and classical path approximation (CPA). Still, system size and simulation timescale are strongly limited by costly ab initio calculations of electronic energies, forces, and NA couplings. We resolve the limitations by developing a fully machine learning (ML) approach in which all the above properties are obtained using neural networks based on local descriptors. The ML models correlate the target properties for NA-MD, implemented with DFT and CPA, directly to the system structure. Trained on small systems, the neural networks are applied to large systems and long timescales, extending NA-MD capabilities by orders of magnitude. We demonstrate the approach with dependence of charge trapping and recombination on defect concentration in MoS2. Defects provide the main mechanism of charge losses, resulting in performance degradation. Charge trapping slows with decreasing defect concentration; however, recombination exhibits complex dependence, conditional on whether it occurs between free or trapped charges, and relative concentrations of carriers and defects. Delocalized shallow traps can become localized with increasing temperature, changing trapping and recombination behavior. Completely based on ML, the approach bridges the gap between theoretical models and realistic experimental conditions and enables NA-MD on thousand-atom systems and many nanoseconds. 
    more » « less
  4. The adversarial vulnerability of neural nets, and subsequent techniques to create robust models have attracted significant attention; yet we still lack a full understanding of this phenomenon. Here, we study adversarial examples of trained neural networks through analytical tools afforded by recent theory advances connecting neural networks and kernel methods, namely the Neural Tangent Kernel (NTK), following a growing body of work that leverages the NTK approximation to successfully analyze important deep learning phenomena and design algorithms for new applications. We show how NTKs allow to generate adversarial examples in a ``training-free'' fashion, and demonstrate that they transfer to fool their finite-width neural net counterparts in the ``lazy'' regime. We leverage this connection to provide an alternative view on robust and non-robust features, which have been suggested to underlie the adversarial brittleness of neural nets. Specifically, we define and study features induced by the eigendecomposition of the kernel to better understand the role of robust and non-robust features, the reliance on both for standard classification and the robustness-accuracy trade-off. We find that such features are surprisingly consistent across architectures, and that robust features tend to correspond to the largest eigenvalues of the model, and thus are learned early during training. Our framework allows us to identify and visualize non-robust yet useful features. Finally, we shed light on the robustness mechanism underlying adversarial training of neural nets used in practice: quantifying the evolution of the associated empirical NTK, we demonstrate that its dynamics falls much earlier into the ``lazy'' regime and manifests a much stronger form of the well known bias to prioritize learning features within the top eigenspaces of the kernel, compared to standard training. 
    more » « less
  5. Abstract Molecular dynamics (MD) is the primary computational method by which modern structural biology explores macromolecule structure and function. Boltzmann generators have been proposed as an alternative to MD, by replacing the integration of molecular systems over time with the training of generative neural networks. This neural network approach to MD enables convergence to thermodynamic equilibrium faster than traditional MD; however, critical gaps in the theory and computational feasibility of Boltzmann generators significantly reduce their usability. Here, we develop a mathematical foundation to overcome these barriers; we demonstrate that the Boltzmann generator approach is sufficiently rapid to replace traditional MD for complex macromolecules, such as proteins in specific applications, and we provide a comprehensive toolkit for the exploration of molecular energy landscapes with neural networks. 
    more » « less