skip to main content

Search for: All records

Award ID contains: 1940203

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present a machine learning framework to train and validate neural networks to predict the anisotropic elastic response of a monoclinic organic molecular crystal known as ‐HMX in the geometrical nonlinear regime. A filtered molecular dynamic (MD) simulations database is used to train neural networks with a Sobolev norm that uses the stress measure and a reference configuration to deduce the elastic stored free energy functional. To improve the accuracy of the elasticity tangent predictions originating from the learned stored free energy, a transfer learning technique is used to introduce additional tangential constraints from the data while necessary conditions (e.g., strong ellipticity, crystallographic symmetry) for the correctness of the model are either introduced as additional physical constraints or incorporated in the validation tests. Assessment of the neural networks is based on (1) the accuracy with which they reproduce the bottom‐line constitutive responses predicted by MD, (2) the robustness of the models measured by detailed examination of their stability and uniqueness, and (3) the admissibility of the predicted responses with respect to mechanics principles in the finite‐deformation regime. We compare the training efficiency of the neural networks under different Sobolev constraints and assess the accuracy and robustness of the models against MD benchmarks for ‐HMX.

    more » « less
  2. Abstract

    Supervised machine learning via artificial neural network (ANN) has gained significant popularity for many geomechanics applications that involves multi‐phase flow and poromechanics. For unsaturated poromechanics problems, the multi‐physics nature and the complexity of the hydraulic laws make it difficult to design the optimal setup, architecture, and hyper‐parameters of the deep neural networks. This paper presents a meta‐modeling approach that utilizes deep reinforcement learning (DRL) to automatically discover optimal neural network settings that maximize a pre‐defined performance metric for the machine learning constitutive laws. This meta‐modeling framework is cast as a Markov Decision Process (MDP) with well‐defined states (subsets of states representing the proposed neural network (NN) settings), actions, and rewards. Following the selection rules, the artificial intelligence (AI) agent, represented in DRL via NN, self‐learns from taking a sequence of actions and receiving feedback signals (rewards) within the selection environment. By utilizing the Monte Carlo Tree Search (MCTS) to update the policy/value networks, the AI agent replaces the human modeler to handle the otherwise time‐consuming trial‐and‐error process that leads to the optimized choices of setup from a high‐dimensional parametric space. This approach is applied to generate two key constitutive laws for the unsaturated poromechanics problems: (1) the path‐dependent retention curve with distinctive wetting and drying paths. (2) The flow in the micropores, governed by an anisotropic permeability tensor. Numerical experiments have shown that the resultant ML‐generated material models can be integrated into a finite element (FE) solver to solve initial‐boundary‐value problems as replacements of the hand‐craft constitutive laws.

    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Conventionally, neural network constitutive laws for path-dependent elasto-plastic solids are trained via supervised learning performed on recurrent neural network, with the time history of strain as input and the stress as input. However, training neural network to replicate path-dependent constitutive responses require significant more amount of data due to the path dependence. This demand on diverse and abundance of accurate data, as well as the lack of interpretability to guide the data generation process, could become major roadblocks for engineering applications. In this work, we attempt to simplify these training processes and improve the interpretability of the trained models by breaking down the training of material models into multiple supervised machine learning programs for elasticity, initial yielding and hardening laws that can be conducted sequentially. To predict pressure-sensitivity and rate dependence of the plastic responses, we reformulate the Hamliton-Jacobi equation such that the yield function is parametrized in the product space spanned by the principle stress, the accumulated plastic strain and time. To test the versatility of the neural network meta-modeling framework, we conduct multiple numerical experiments where neural networks are trained and validated against (1) data generated from known benchmark models, (2) data obtained from physical experiments and (3) data inferred from homogenizing sub-scale direct numerical simulations of microstructures. The neural network model is also incorporated into an offline FFT-FEM model to improve the efficiency of the multiscale calculations. 
    more » « less