Advances in integrated sensors and low-power electronics have led to an increase in the use of wearable devices for health and activity monitoring applications. These devices have severe limitations on weight, form-factor, and battery size since they have to be comfortable to wear. Therefore, they must minimize the total platform energy consumption while satisfying functionality (e.g., accuracy) and performance requirements. Optimizing the platform-level energy efficiency requires considering both the sensor and processing subsystems. To this end, this paper presents a sensor-classifier co-optimization technique with human activity recognition as a driver application. The proposed technique dynamically powers down the accelerometer sensors and controls their sampling rate as a function of the user activity. It leads to a 49% reduction in total platform energy consumption with less than 1% decrease in activity recognition accuracy.
more »
« less
OMAD: On-device Mental Anomaly Detection for Substance and Non-Substance Users
Stay at home order during the COVID-19 helps flatten the curve but ironically, instigate mental health problems among the people who have Substance Use Disorders. Measuring the electrical activity signals in brain using off-the-shelf consumer wearable devices such as smart wristwatch and mapping them in real time to underlying mood, behavioral and emotional changes play striking roles in postulating mental health anomalies. In this work, we propose to implement a wearable, On-device Mental Anomaly Detection (OMAD) system to detect anomalous behaviors and activities that render to mental health problems and help clinicians to design effective intervention strategies. We propose an intrinsic artifact removal model on Electroencephalogram (EEG) signal to better correlate the fine-grained behavioral changes. We design model compression technique on the artifact removal and activity recognition (main) modules. We implement a magnitude-based weight pruning technique both on convolutional neural network and Multilayer Perceptron to employ the inference phase on Nvidia Jetson Nano; one of the tightest resource-constrained devices for wearables. We experimented with three different combinations of feature extractions and artifact removal approaches. We evaluate the performance of OMAD in terms of accuracy, F1 score, memory usage and running time for both unpruned and compressed models using EEG data from both control and treatment (alcoholic) groups for different object recognition tasks. Our artifact removal model and main activity detection model achieved about ≈ 93% and 90% accuracy, respectively with significant reduction in model size (70%) and inference time (31%).
more »
« less
- Award ID(s):
- 1750936
- PAR ID:
- 10219619
- Date Published:
- Journal Name:
- 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE)
- Page Range / eLocation ID:
- 466 to 471
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wearable internet of things (IoT) devices can enable a variety of biomedical applications, such as gesture recognition, health monitoring, and human activity tracking. Size and weight constraints limit the battery capacity, which leads to frequent charging requirements and user dissatisfaction. Minimizing the energy consumption not only alleviates this problem, but also paves the way for self-powered devices that operate on harvested energy. This paper considers an energy-optimal gesture recognition application that runs on energy-harvesting devices. We first formulate an optimization problem for maximizing the number of recognized gestures when energy budget and accuracy constraints are given. Next, we derive an analytical energy model from the power consumption measurements using a wearable IoT device prototype. Then, we prove that maximizing the number of recognized gestures is equivalent to minimizing the duration of gesture recognition. Finally, we utilize this result to construct an optimization technique that maximizes the number of gestures recognized under the energy budget constraints while satisfying the recognition accuracy requirements. Our extensive evaluations demonstrate that the proposed analytical model is valid for wearable IoT applications, and the optimization approach increases the number of recognized gestures by up to 2.4× compared to a manual optimization.more » « less
-
A photoplethysmography (PPG) is an uncomplicated and inexpensive optical technique widely used in the healthcare domain to extract valuable health-related information, e.g., heart rate variability, blood pressure, and respiration rate. PPG signals can easily be collected continuously and remotely using portable wearable devices. However, these measuring devices are vulnerable to motion artifacts caused by daily life activities. The most common ways to eliminate motion artifacts use extra accelerometer sensors, which suffer from two limitations: i) high power consumption and ii) the need to integrate an accelerometer sensor in a wearable device (which is not required in certain wearables). This paper proposes a low-power non-accelerometer-based PPG motion artifacts removal method outperforming the accuracy of the existing methods. We use Cycle Generative Adversarial Network to reconstruct clean PPG signals from noisy PPG signals. Our novel machine-learning-based technique achieves 9.5 times improvement in motion artifact removal compared to the state-of-the-art without using extra sensors such as an accelerometer, which leads to 45% improvement in energy efficiency.more » « less
-
Brain-computer interface (BCI) actively translates the brain signals into executable actions by establishing direct communication between the human brain and external devices. Recording brain activity through electroencephalography (EEG) is generally contaminated with both physiological and nonphysiological artifacts, which significantly hinders the BCI performance. Artifact subspace reconstruction (ASR) is a well-known statistical technique that automatically removes artifact components by determining the rejection threshold based on the initial reference EEG segment in multichannel EEG recordings. In real-world applications, the fixed threshold may limit the efficacy of the artifact correction, especially when the quality of the reference data is poor. This study proposes an adaptive online ASR technique by integrating the Hebbian/anti-Hebbian neural networks into the ASR algorithm, namely, principle subspace projection ASR (PSP-ASR) and principal subspace whitening ASR (PSW-ASR) that segmentwise self-organize the artifact subspace by updating the synaptic weights according to the Hebbian and anti-Hebbian learning rules. The effectiveness of the proposed algorithm is compared to the conventional ASR approaches on benchmark EEG dataset and three BCI frameworks, including steady-state visual evoked potential (SSVEP), rapid serial visual presentation (RSVP), and motor imagery (MI) by evaluating the root-mean-square error (RMSE), the signal-to-noise ratio (SNR), the Pearson correlation, and classification accuracy. The results demonstrated that the PSW-ASR algorithm effectively removed the EEG artifacts and retained the activity-specific brain signals compared to the PSP-ASR, standard ASR (Init-ASR), and moving-window ASR (MW-ASR) methods, thereby enhancing the SSVEP, RSVP, and MI BCI performances. Finally, our empirical results from the PSW-ASR algorithm suggested the choice of an aggressive cutoff range of c = 1-10 for activity-specific BCI applications and a moderate range of for the benchmark dataset and general BCI applications.more » « less
-
Advances in embedded systems have enabled integration of many lightweight sensory devices within our daily life. In particular, this trend has given rise to continuous expansion of wearable sensors in a broad range of applications from health and fitness monitoring to social networking and military surveillance. Wearables leverage machine learning techniques to profile behavioral routine of their end-users through activity recognition algorithms. Current research assumes that such machine learning algorithms are trained offline. In reality, however, wearables demand continuous reconfiguration of their computational algorithms due to their highly dynamic operation. Developing a personalized and adaptive machine learning model requires real-time reconfiguration of the model. Due to stringent computation and memory constraints of these embedded sensors, the training/re-training of the computational algorithms need to be memory- and computation-efficient. In this paper, we propose a framework, based on the notion of online learning, for real-time and on-device machine learning training. We propose to transform the activity recognition problem from a multi-class classification problem to a hierarchical model of binary decisions using cascading online binary classifiers. Our results, based on Pegasos online learning, demonstrate that the proposed approach achieves 97% accuracy in detecting activities of varying intensities using a limited memory while power usages of the system is reduced by more than 40%.more » « less
An official website of the United States government

