skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Probing electronic decoherence with high-resolution attosecond photoelectron interferometry
Abstract

Quantum coherence plays a fundamental role in the study and control of ultrafast dynamics in matter. In the case of photoionization, entanglement of the photoelectron with the ion is a well-known source of decoherence when only one of the particles is measured. Here, we investigate decoherence due to entanglement of the radial and angular degrees of freedom of the photoelectron. We study two-photon ionization via the 2s2p autoionizing state in He using high spectral resolution photoelectron interferometry. Combining experiment and theory, we show that the strong dipole coupling of the 2s2p and 2p$$^2$$2states results in the entanglement of the angular and radial degrees of freedom. This translates, in angle-integrated measurements, into a dynamic loss of coherence during autoionization.

Graphic Abstract 
more » « less
Award ID(s):
1912507
PAR ID:
10369737
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal D
Volume:
76
Issue:
7
ISSN:
1434-6060
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The electric field surrounding a single positron in a metal is screened by an increase in the local electron density which, in the case of nearly free-electron metals (like Al, Na, etc.), has a radial distribution similar to that of the electron in positronium (Ps). In such metals, a singlet pair of positrons would experience an attractive interaction and at low enough electron densities could possibly form a bound state that is held together by exchange and correlation energies, thus forming structures analogous to that of the positronium molecule (Ps$$_2$$2), with binding energies of a few tenths of an eV. Such di-positrons could be prevalent at positron densities of around 10$$^{18}$$18cm$$^{-3}$$-3and, if so, would be evident from an apparent broadening of the sharp step at the Fermi surface in measurements of the electron momentum distribution by the angular correlation of the 2$$\gamma $$γannihilation radiation. Even if di-positrons are not directly formed in a metal, optical spectroscopy of Ps$$_2$$2formed in vacuum via pairs of positrons simultaneously being emitted from the surface could be applied to the direct measurement of the momentum distribution of Cooper pairs. If they exist, di-positrons in metals would yield interesting information about electron and positron interactions and at very high densities might allow the study of a di-positron Bose–Einstein condensate immersed in an electron gas.

    Graphic Abstract 
    more » « less
  2. Abstract

    We report on a series of detailed Breit-Pauli and Dirac B-spline R-matrix (DBSR) differential cross section (DCS) calculations for excitation of the$$5\,^2\textrm{S}_{1/2} \rightarrow 5\,^2\textrm{P}_{1/2}$$52S1/252P1/2and$$5\,^2\textrm{S}_{1/2}\rightarrow 5\,^2\textrm{P}_{3/2}$$52S1/252P3/2states in rubidium by 40 eV incident electrons. The early BP computations shown here were carried out with both 5 states and 12 states, while the DBSR models coupled 150 and 325 states, respectively. We also report corresponding results from a limited set of DCS measurements on the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$52P1/2,3/2states, with the experimental data being restricted to the scattered electron angular range 2–$$10^\circ $$10. Typically, good agreement is found between our calculated and measured DCS for excitation of the unresolved$$5\,^2\textrm{P}_{1/2,3/2}$$52P1/2,3/2states, with best accord being found between the DBSR predictions and the measured data. The present theoretical and experimental results are also compared with predictions from earlier 40 eV calculations using the nonrelativistic Distorted-Wave Born Approximation and a Relativistic Distorted-Wave model.

    Graphic abstract 
    more » « less
  3. Abstract

    Energy-conserving Hermite methods for solving Maxwell’s equations in dielectric and dispersive media are described and analyzed. In three space dimensions, methods of order 2mto$$2m+2$$2m+2require$$(m+1)^3$$(m+1)3degrees-of-freedom per node for each field variable and can be explicitly marched in time with steps independent ofm. We prove the stability for time steps limited only by domain-of-dependence requirements along with error estimates in a special semi-norm associated with the interpolation process. Numerical experiments are presented which demonstrate that Hermite methods of very high order enable the efficient simulation of the electromagnetic wave propagation over thousands of wavelengths.

     
    more » « less
  4. Abstract

    The characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$[Cr(OH2)6]3+/$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$[Cr(OH2)6]2+, as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,$$\mathrm {[Fe{(CN)}_6]^{4-}}$$[Fe(CN)6]4-/$$\mathrm {[Fe{(CN)}_6]^{3-}}$$[Fe(CN)6]3-. We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$[Cr(OH2)6]3+to$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$[Cr(OH2)6]2+there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From$$\mathrm {[Fe{(CN)}_6]^{4-}}$$[Fe(CN)6]4-to$$\mathrm {[Fe{(CN)}_6]^{3-}}$$[Fe(CN)6]3-we observed an increase in covalency without altering the bond nature. Distinct$$\pi $$πback-donation disparity could be confirmed by comparison with the isolated CN$$^-$$-system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications.

    Graphical abstract

    The adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies

     
    more » « less
  5. Abstract

    We report on a measurement of Spin Density Matrix Elements (SDMEs) in hard exclusive$$\rho ^0$$ρ0meson muoproduction at COMPASS using 160 GeV/cpolarised$$ \mu ^{+}$$μ+and$$ \mu ^{-}$$μ-beams impinging on a liquid hydrogen target. The measurement covers the kinematic range 5.0 GeV/$$c^2$$c2$$< W<$$<W<17.0 GeV/$$c^2$$c2, 1.0 (GeV/c)$$^2$$2$$< Q^2<$$<Q2<10.0 (GeV/c)$$^2$$2and 0.01 (GeV/c)$$^2$$2$$< p_{\textrm{T}}^2<$$<pT2<0.5 (GeV/c)$$^2$$2. Here,Wdenotes the mass of the final hadronic system,$$Q^2$$Q2the virtuality of the exchanged photon, and$$p_{\textrm{T}}$$pTthe transverse momentum of the$$\rho ^0$$ρ0meson with respect to the virtual-photon direction. The measured non-zero SDMEs for the transitions of transversely polarised virtual photons to longitudinally polarised vector mesons ($$\gamma ^*_T \rightarrow V^{ }_L$$γTVL) indicate a violation ofs-channel helicity conservation. Additionally, we observe a dominant contribution of natural-parity-exchange transitions and a very small contribution of unnatural-parity-exchange transitions, which is compatible with zero within experimental uncertainties. The results provide important input for modelling Generalised Parton Distributions (GPDs). In particular, they may allow one to evaluate in a model-dependent way the role of parton helicity-flip GPDs in exclusive$$\rho ^0$$ρ0production.

     
    more » « less