skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate Change Impacts on the Patagonian Shelf Break Front
Abstract We characterize long‐term trends of sea surface temperature (SST), absolute dynamic topography, and chlorophyll‐a(CHL) in the Patagonian shelf break front (SBF) using 27 years (1993–2019) of satellite data. Warming of the Argentinean shelf waters and the southwestward displacement of the Brazil‐Malvinas Confluence (BMC) impact the northernmost extension of the SBF. Cooling of the Malvinas Current (MC) and the concurrent warming of the adjacent shelf waters lead to a significant increase of SST gradients along the outer shelf. The southwestward displacement of the BMC implies a similar shift of the SBF. An increase in CHL trend appears to be associated with southerly wind anomalies along the shelf break. We estimate a southward shift of the northernmost penetration of the MC of −0.11 ± 0.076°/decade.  more » « less
Award ID(s):
1830856
PAR ID:
10369780
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Marine heatwave (MHW) events have led to acute decreases in primary production and phytoplankton biomass in the surface ocean, particularly at the mid latitudes. In the Northeast Pacific, these anomalous events have occasionally encroached onto the Oregon shelf during the ecologically important summer upwelling season. Increased temperatures reduce the density of offshore waters, and as a MHW is present offshore, coincident downwelling or relaxation may transport warmer waters inshore. As an event persists, new upwelling‐driven blooms may be prevented from extending further offshore. This work focuses on MHWs and coincident events that occurred off Oregon during the summers of 2015–2023. In late summer 2015 and 2019, both documented MHW years, coastal phytoplankton biomass extended on average 6 and 9 km offshore of the shelf break along the Newport Hydrographic Line, respectively. During years not influenced by anomalous warming, coastal biomass extended over 34 km offshore of the shelf break. Reduced biomass also occurs with reduced upwelling transport and nutrient flux during these anomalous warm periods. However, the enhanced front associated with a MHW aids in the compression of phytoplankton closer to shore. Over shorter events, heatwaves propagating far inshore also coincide with reduced chlorophyllaand sea‐surface density at select cross‐shelf locations, further supporting a physical displacement mechanism. Paired with the physiological impacts on communities, heatwave‐reinforced physical confinement of blooms over the inner‐shelf may have a measurable effect on the gravitational flux and alongshore transport of particulate organic carbon. 
    more » « less
  2. Abstract We present observational evidence of a significant increase in Salinity Maximum intrusions in the Northeast US Shelf waters in the years following 2000. This increase is subsequent to and influenced by a previously observed regime-shift in the annual formation rate for Gulf Stream Warm Core Rings, which are relatively more saline than the shelf waters. Specifically, mid-depth salinity maximum intrusions, a cross-shelf exchange process, has shown a quadrupling in frequency on the shelf after the year 2000. This increase in intrusion frequency can be linked to a similar increase in Warm Core Ring occupancy footprint along the offshore edge of the shelf-break which has greatly increased the abundance of warm salty water within the Slope Sea. The increased ring occupancy footprint along the shelf follows from the near doubling in annual Warm Core Ring formation rate from the Gulf Stream. The increased occurrence of intrusions is likely driven by a combination of a larger number of rings in the slope sea and the northward shift in the GS position which may lead to more interactions between rings and the shelf topography. These results have significant implications for interpreting temporal changes in the shelf ecosystem from the standpoint of both larval recruitment as well as habitability for various important commercial species. 
    more » « less
  3. Climate change is altering global ocean phenology, the timing of annually occurring biological events. We examined the changing phenology of the phytoplankton accumulation season west of the Antarctic Peninsula to show that blooms are shifting later in the season over time in ice-associated waters. The timing of the start date and peak date of the phytoplankton accumulation season occurred later over time from 1997 to 2022 in the marginal ice zone and over the continental shelf. A divergence was seen between offshore waters and ice-associated waters, with offshore bloom timing becoming earlier, yet marginal ice zone and continental shelf bloom timing shifting later. Higher chlorophylla(chla) concentration in the fall season was seen in recent years, especially over the northern continental shelf. Minimal long-term trends in annual chlaoccurred, likely due to the combination of later start dates in spring and higher chlain fall. Increasing spring wind speed is the most likely mechanism for later spring start dates, leading to deeper wind mixing in a region experiencing sea ice loss. Later phytoplankton bloom timing over the marginal ice zone and continental shelf will have consequences for surface ocean carbon uptake, food web dynamics, and trophic cascades. 
    more » « less
  4. Abstract Two oceanographic cruises were completed in September 2016 and August 2017 to investigate the distribution of particulate organic matter (POM) across the northeast Chukchi Shelf. Both periods were characterized by highly stratified conditions, with major contrasts in the distribution of regional water masses that impacted POM distributions. Overall, surface waters were characterized by low chlorophyll fluorescence (Chl Fl < 0.8 mg m−3) and particle beam attenuation (cp < 0.3 m−1) values, and low concentrations of particulate organic carbon (POC < 8 mmol m−3), chlorophyll and pheophytin (Chl + Pheo < 0.8 mg m−3), and suspended particulate matter (SPM ∼2 g m−3). Elevated Chl Fl and Chl + Pheo (∼2 mg m−3) values measured at mid‐depths below the pycnocline defined the subsurface chlorophyll maxima (SCM), which exhibited moderate POC (∼10 mmol m−3),cp(∼0.4 m−1) and SPM (∼3 g m−3). In contrast, deeper waters below the pycnocline were characterized by low Chl Fl and Chl + Pheo (∼0.7 mg m−3), highcp(>1.5 m−1) and SPM (>8 g m−3) and elevated POC (>10 mmol m−3). POM compositions from surface and SCM regions of the water column were consistent with contributions from active phytoplankton sources whereas samples from bottom waters were characterized by high Pheo/(Chl + Pheo) ratios (>0.4) indicative of altered phytoplankton detritus. Marked contrasts in POM were observed in both surface and middepth waters during both cruises. Increases in chlorophyll and POC consistent with enhanced productivity were measured in middepth waters during the September 2016 cruise following a period of downwelling‐favorable winds, and in surface waters during the August 2017 cruise following a period of upwelling‐favorable winds. 
    more » « less
  5. Production of particulate organic carbon (POC) in nutrient-rich coastal waters over continental shelves, its export to depth, and its transport to deeper ocean waters is a poorly quantified component of the global carbon cycle. A critical step in quantifying this vertical transport is identifying shelf processes that export phytoplankton out of the euphotic zone. During cruises of the Santa Barbara Coastal Long Term Ecological Research project, we discovered substantial chlorophylla(chla)below the euphotic zone in the Santa Barbara Channel, a part of the southern California Current System. Observations from towed, undulating vehicles revealed deep chlorophyll layers near fronts where upwelled waters from central California converged with lower-density waters from the Southern California Bight. The mean fraction ± 1 standard deviation (SD) of chlorophyll biomass below the euphotic zone spanning the entire Santa Barbara Channel was ~7 ± 9% during 13 cruises averaged across all seasons. In one spring cruise, the fraction was ~30%, and in other cruises the layers were absent. Phytoplankton export out of the euphotic zone by subduction was indicated by spatial coherence between chlaand sloping density surfaces. Vertical plumes of chlacrossing density surfaces indicated enhanced gravitational export within cyclonic eddies. Chlain water samples below the euphotic zone, away from fronts and cyclonic flows, suggested additional phytoplankton export. Our results emphasize the importance of subduction in the export of phytoplankton and POC out of the euphotic zone in coastal upwelling systems. 
    more » « less