skip to main content

This content will become publicly available on September 21, 2024

Title: Phytoplankton transport out of the euphotic zone by frontal subduction and gravitational sinking in the Santa Barbara Channel, CA, USA

Production of particulate organic carbon (POC) in nutrient-rich coastal waters over continental shelves, its export to depth, and its transport to deeper ocean waters is a poorly quantified component of the global carbon cycle. A critical step in quantifying this vertical transport is identifying shelf processes that export phytoplankton out of the euphotic zone. During cruises of the Santa Barbara Coastal Long Term Ecological Research project, we discovered substantial chlorophylla(chla)below the euphotic zone in the Santa Barbara Channel, a part of the southern California Current System. Observations from towed, undulating vehicles revealed deep chlorophyll layers near fronts where upwelled waters from central California converged with lower-density waters from the Southern California Bight. The mean fraction ± 1 standard deviation (SD) of chlorophyll biomass below the euphotic zone spanning the entire Santa Barbara Channel was ~7 ± 9% during 13 cruises averaged across all seasons. In one spring cruise, the fraction was ~30%, and in other cruises the layers were absent. Phytoplankton export out of the euphotic zone by subduction was indicated by spatial coherence between chlaand sloping density surfaces. Vertical plumes of chlacrossing density surfaces indicated enhanced gravitational export within cyclonic eddies. Chlain water samples below the euphotic zone, away from fronts and cyclonic flows, suggested additional phytoplankton export. Our results emphasize the importance of subduction in the export of phytoplankton and POC out of the euphotic zone in coastal upwelling systems.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Inter Research
Date Published:
Journal Name:
Marine Ecology Progress Series
Page Range / eLocation ID:
41 to 63
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two oceanographic cruises were completed in September 2016 and August 2017 to investigate the distribution of particulate organic matter (POM) across the northeast Chukchi Shelf. Both periods were characterized by highly stratified conditions, with major contrasts in the distribution of regional water masses that impacted POM distributions. Overall, surface waters were characterized by low chlorophyll fluorescence (Chl Fl < 0.8 mg m−3) and particle beam attenuation (cp < 0.3 m−1) values, and low concentrations of particulate organic carbon (POC < 8 mmol m−3), chlorophyll and pheophytin (Chl + Pheo < 0.8 mg m−3), and suspended particulate matter (SPM ∼2 g m−3). Elevated Chl Fl and Chl + Pheo (∼2 mg m−3) values measured at mid‐depths below the pycnocline defined the subsurface chlorophyll maxima (SCM), which exhibited moderate POC (∼10 mmol m−3),cp(∼0.4 m−1) and SPM (∼3 g m−3). In contrast, deeper waters below the pycnocline were characterized by low Chl Fl and Chl + Pheo (∼0.7 mg m−3), highcp(>1.5 m−1) and SPM (>8 g m−3) and elevated POC (>10 mmol m−3). POM compositions from surface and SCM regions of the water column were consistent with contributions from active phytoplankton sources whereas samples from bottom waters were characterized by high Pheo/(Chl + Pheo) ratios (>0.4) indicative of altered phytoplankton detritus. Marked contrasts in POM were observed in both surface and middepth waters during both cruises. Increases in chlorophyll and POC consistent with enhanced productivity were measured in middepth waters during the September 2016 cruise following a period of downwelling‐favorable winds, and in surface waters during the August 2017 cruise following a period of upwelling‐favorable winds.

    more » « less
  2. Dolan, John (Ed.)
    Abstract During two cruises in the oligotrophic oceanic Gulf of Mexico, we deployed sediment traps at three depths: center of the euphotic zone (EZ) (60 m), base of the EZ (117–151 m), and in the twilight zone (231 m). Organic carbon export declined with depth from 6.4 to 4.6 to 2.4 mmol C m−2 d−1, suggesting that net particle production was concentrated in the upper EZ. Net primary production varied from 24 to 29 mmol C m−2 d−1, slightly more than half in the upper EZ. Export ratios varied from 11 to 25%. Trap measurements of chlorophyll and phaeopigments allowed us to quantify fluxes of fresh phytoplankton and herbivorous fecal pellets, respectively, which were both minor contributors to total flux, although their contributions varied with depth. Phytoplankton flux was more important from the upper to lower EZ; fecal pellets were more important at the EZ base and below. C:N elemental ratios and 13C and 15N isotope analyses indicated particle transformations within and beneath the EZ. 234Th-238U disequilibrium measurements varied, likely reflecting the mixing of water from multiple regions over the ~month-long time-scale of 234Th. Our results highlight the complexity of the biological carbon pump in oligotrophic regions. 
    more » « less
  3. Abstract

    Herbivorous consumption of primary production is a key transformation in global biogeochemical cycles, directing matter and energy either to higher trophic levels, export production, or remineralization. Grazing by microzooplankton is often poorly constrained, particularly in dynamic coastal systems. Temperate coastal areas are seasonally and spatially variable, which presents both challenges and opportunities to identify patterns and drivers of grazing pressure. Here we report on two winter and one summer week‐long cruises (2018–2019), as part of the new Northeast U.S. Shelf Long‐Term Ecological Research program. During both seasons, coastal waters were colder and fresher, and had higher phytoplankton biomass than waters at the shelf break. The phytoplankton community was dominated by large cells in winter and by small cells in summer. Phytoplankton growth rates ranged from < 0.5 d−1in winter and up to 1.4 d−1in summer and were strongly correlated to temperature, to light availability, and to phytoplankton community size‐structure. Grazing rates were not correlated with total chlorophyll a, which points to other biological drivers, including species composition in predator‐prey interactions at the first trophic level. The percentage of primary production consumed (%PP) indicated higher trophic transfer in winter (%PP > 50%) than during summer (%PP < 20%), highlighting seasonal shifts in planktonic food web structure and function. These results imply that predictable shifts in environmental conditions can be linked to ecosystem shifts in net primary production. Hierarchies of variability, from localized to interannual and long‐term climate driven, can be understood within the context of sustained measurements of ecosystem properties and function.

    more » « less
  4. Abstract

    This study examines an unprecedented bloom ofEmiliania huxleyialong the California coast during the NE Pacific warm anomaly of 2014–2015. Observations of coccolithophore populations from microscopy and flow cytometry, surface current data derived from high‐frequency radar, and satellite ocean color imagery were used to track the population dynamics of the bloom in the Santa Barbara Channel. Results show a coastal bloom of mostlyE. huxleyithat reached cell concentrations up to 5.7 × 106cells per liter and a maximum spatial extent of 1,220 km2. We speculate that the rare cooccurrence of warm water, high water column stability, and an extensive preceding diatom bloom during the anomaly contributed to the development of this bloom. Flow cytometry measurements provided insight on the phases of bloom development (e.g., growth versus senescence) with calcified cells comprising up to 64% of particles containing chlorophyll a and detached‐coccolith:cell ratios ranging from 10 to >100. Lagrangian particle trajectories estimated during two nonoverlapping 48‐ and 72‐hr periods showed the changes in the surface structure of the bloom due to advection by surface currents and nonconservative biological and physical processes. Time rates of change of particulate inorganic carbon were estimated along particle trajectories, with rates ranging from −4 to 6 μmol·L−1·day−1. The approach presented here is likely to be useful for understanding the evolution of coastal phytoplankton bloom events in a general setting.

    more » « less
  5. Abstract

    In eastern boundary current systems, strong coastal upwelling brings deep, nutrient‐rich waters to the surface ocean, supporting a productive food web. The nitrate load in water masses that supply the region can be impacted by a variety of climate‐related processes that subsequently modulate primary productivity. In this study, two coastal upwelling regimes along central and southern California were sampled seasonally for nitrogen and oxygen stable isotopes of nitrate (i.e., nitrate isotopes) over several years (2010–2016) on 14 California Cooperative Oceanic Fisheries Investigations (CalCOFI) cruises. Seasonal, interannual, and spatial variations in euphotic zone nitrate isotopes were largely driven by the extent of nitrate utilization, sometimes linked to iron limitation of diatom productivity. Pronounced isotopic enrichment developed with the El Niño conditions in late 2015 and early 2016 which likely resulted from increased nitrate utilization linked to reduced nitrate supply to the euphotic zone. Differential enrichment of nitrogen and oxygen isotopes was observed in the surface ocean, suggesting that phytoplankton increased their reliance on locally nitrified (recycled) nitrate during warmer and more stratified periods. Overall, nitrate isotopes effectively differentiated important euphotic zone processes such as nitrate assimilation and nitrification, while archiving the influence of disparate controls such as iron limitation and climatic events through their effects on nitrate utilization and isotopic fractionation.

    more » « less