The passive membrane permeation of small-molecule drugs and relatively small hydrophobic peptides is relatively well understood. In contrast, how long polar peptides can directly pass through a membrane has remained a mystery. This process can be achieved with transcellular permeation enhancers, contributing significantly to the oral transcellular absorption of important peptide drugs like semaglutide — the active component in Ozempic, which is used as Rybelsus in a successful oral formulation. Here we now provide, for the first time, a detailed, plausible molecular mechanism of how such a polar peptide can realistically pass through a membrane paired with the permeation enhancer salcaprozate sodium (SNAC). We provide not only simulation results, obtained with scalable continuous constant pH molecular dynamics (CpHMD) simulations, but also experimental evidence (NMR, DOSY, and DLS) to support this unique passive permeation mechanism. Our computational and experimental evidence points toward the formation of permeation-enhancer-filled, fluid membrane defects, in which the polar peptide can be submerged in a process analogous to sinking in quicksand.
more »
« less
Peptide‐Modulated pH Rhythms
Abstract Many drugs adjust and/or control the spatiotemporal dynamics of periodic processes such as heartbeat, neuronal signaling and metabolism, often by interacting with proteins or oligopeptides. Here we use a quasi‐biocompatible, non‐equilibrium pH oscillatory system as a biomimetic biological clock to study the effect of pH‐responsive peptides on rhythm dynamics. The added peptides generate feedback that can lengthen or shorten the oscillatory period during which the peptides alternate between random coil and coiled‐coil conformations. This modulation of a chemical clock supports the notion that short peptide reagents may have utility as drugs to regulate human body clocks.
more »
« less
- Award ID(s):
- 1856484
- PAR ID:
- 10369819
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhysChem
- Volume:
- 23
- Issue:
- 16
- ISSN:
- 1439-4235
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Thermoresponsive resilin‐like polypeptides (RLPs) of various lengths were genetically fused to two different computationally designed coiled coil‐forming peptides with distinct thermal stability, to develop new strategies to assemble coiled coil peptides via temperature‐triggered phase separation of the RLP units. Their successful production in bacterial expression hosts was verified via gel electrophoresis, mass spectrometry, and amino acid analysis. Circular dichroism (CD) spectroscopy, ultraviolet‐visible (UV/Vis) turbidimetry, and dynamic light scattering (DLS) measurements confirmed the stability of the coiled coils and showed that the thermosensitive phase behavior of the RLPs was preserved in the genetically fused hybrid polypeptides. Cryogenic‐transmission electron microscopy and coarse‐grained modeling revealed that functionalizing the coiled coils with thermoresponsive RLPs leads to their thermally triggered noncovalent assembly into nanofibrillar assemblies.more » « less
-
Abstract Stimuli‐responsive peptides, particularly pH‐responsive variants, hold significant promise in biomedical and technological applications by leveraging the broad pH spectrum inherent to biological environments. However, the limited number of natural pH‐responsive amino acids within biologically relevant pH ranges presents challenges for designing rational pH‐responsive peptide assemblies. In our study, we introduce a novel approach by incorporating a library of non‐natural amino acids featuring chemically diverse tertiary amine side chains. Hydrophobic and ionic properties of these non‐natural amino acids facilitate their incorporation into the assembly domain when uncharged, and electrostatic repulsion promotes disassembly under lower pH conditions. Furthermore, we observed a direct relationship between the number of substitutions and the hydrophobicity of these amino acids, influencing their pH‐responsive properties and enabling rational design based on desired transitional pH ranges. The structure‐activity relationship of these pH‐responsive peptides was evaluated by assessing their antimicrobial properties, as their antimicrobial activity is triggered by the disassembly of peptides to release active monomers. This approach not only enhances the specificity and controllability of pH responsiveness but also broadens the scope of peptide materials in biomedical and technological applications.more » « less
-
Abstract The failure to treat everyday bacterial infections is a current threat as pathogens are finding new ways to thwart antibiotics through mechanisms of resistance and intracellular refuge, thus rendering current antibiotic strategies ineffective. Cell‐penetrating peptides (CPPs) are providing a means to improve antibiotics that are already approved for use. Through coadministration and conjugation of antibiotics with CPPs, improved accumulation and selectivity with alternative and/or additional modes of action against infections have been observed. Herein, we review the recent progress of this antibiotic–cell‐penetrating peptide strategy in combatting sensitive and drug‐resistant pathogens. We take a closer look into the specific antibiotics that have been enhanced, and in some cases repurposed as broad‐spectrum drugs. Through the addition and conjugation of cell‐penetrating peptides to antibiotics, increased permeation across mammalian and/or bacterial membranes and a broader range in bacterial selectivity have been achieved.more » « less
-
null (Ed.)Injectable hydrogels are attractive for therapeutic delivery because they can be locally administered through minimally-invasive routes. Charge-complementary peptide nanofibers provide hydrogels that are suitable for encapsulation of biotherapeutics, such as cells and proteins, because they assemble under physiological temperature, pH, and ionic strength. However, relationships between the sequences of charge-complementary peptides and the physical properties of the hydrogels that they form are not well understood. Here we show that hydrogel viscoelasticity, pore size, and pore structure depend on the pairing of charge-complementary “CATCH(+/−)” peptides. Oscillatory rheology demonstrated that co-assemblies of CATCH(4+/4−), CATCH(4+/6−), CATCH(6+/4−), and CATCH(6+/6−) formed viscoelastic gels that can recover after high-shear and high-strain disruption, although the extent of recovery depends on the peptide pairing. Cryogenic scanning electron microscopy demonstrated that hydrogel pore size and pore wall also depend on peptide pairing, and that these properties change to different extents after injection. In contrast, no obvious correlation was observed between nanofiber charge state, measured with ζ-potential, and hydrogel physical properties. CATCH(4+/6−) hydrogels injected into the subcutaneous space elicited weak, transient inflammation whereas CATCH(6+/4−) hydrogels induced stronger inflammation. No antibodies were raised against the CATCH(4+) or CATCH(6−) peptides following multiple challenges in vehicle or when co-administered with an adjuvant. These results demonstrate that CATCH(+/−) peptides form biocompatible injectable hydrogels with viscoelastic properties that can be tuned by varying peptide sequence, establishing their potential as carriers for localized delivery of therapeutic cargoes.more » « less
An official website of the United States government
