skip to main content

Title: Single Pulse Dispersion Measure of the Crab Pulsar

We investigate the use of bright single pulses from the Crab pulsar to determine separately the dispersion measure (DM) for the Main Pulse and Interpulse components. We develop two approaches using cross-correlation functions (CCFs). The first method computes the CCF of the total intensity of each of the 64 frequency channels with a reference channel and converts the time lag of maximum correlation into a DM. The second method separately computes the CCF between every pair of channels for each individual bright pulse and extracts an average DM from the distribution of all channel-pair DMs. Both methods allow the determination of the DM with a relative uncertainty of better than 10−5and provide robust estimates for the uncertainty of the best-fit value. We find differences in DM between the Main Pulse, the Low Frequency Interpulse, and the High Frequency Interpulse using both methods in a frequency range from 4 to 6 GHz. Earlier observations of the High Frequency Interpulse carried out by Hankins et al. (2016) resulted in DMHFIP–DMMPof 0.010 ± 0.016 pc cm−3. Our results indicate a DMHFIP–DMMPof 0.0127 ± 0.0011 pc cm−3(with DMcompbeing the DM value of the respective emission component), confirming earlier results with an independent method. During our studies we also find a relation between the brightness of single pulses in the High Frequency Interpulse and their DM. We also discuss the application of the developed methods on the identification of substructures in the case of Fast Radio Bursts.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Medium: X Size: Article No. 84
Article No. 84
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    I conducted a new search for dispersed radio pulses from the X-ray pulsar PSR J0537−6910 in the Large Magellanic Cloud (LMC) in a long (11.6 hr) archival 1.4 GHz Parkes search observation. I searched dispersion measures (DMs) between 0 and 10,000 pc cm−3and detected 49 pulses with a signal-to-noise ratio (S/N) greater than 7 at a wide range of DMs using the HEIMDALL and FETCH pulse detection and classification packages. All of the pulses were weak, with none having an S/N above 8.5. There was a significant excess of pulses observed in the DM range of the known pulsar population in the LMC, suggesting that these pulses may originate from LMC pulsars. Three repeat pulses, each having widths ≲1 ms, were detected in a single DM trial of 103.412 pc cm−3, which is in the LMC DM range. This is unlikely to occur by chance in a single DM trial in this search at the (marginally significant) 4.3σlevel. It remains unclear whether any of the detected pulses in the sample are from PSR J0537−6910 itself.

    more » « less

    We present four new fast radio bursts discovered in a search of the Parkes 70-cm pulsar survey data archive for dispersed single pulses and bursts. We searched dispersion measures (DMs) ranging between 0 and 5000 pc cm−3 with the HEIMDALL and FETCH detection and classification algorithms. All four of the fast radio bursts (FRBs) discovered have significantly larger widths (>50 ms) than almost all of the FRBs detected and catalogued to date. The large pulse widths are not dominated by interstellar scattering or dispersive smearing within channels. One of the FRBs has a DM of 3338 pc cm3, the largest measured for any FRB to date. These are also the first FRBs detected by any radio telescope so far, predating the Lorimer Burst by almost a decade. Our results suggest that pulsar survey archives remain important sources of previously undetected FRBs and that searches for FRBs on time-scales extending beyond ∼100 ms may reveal the presence of a larger population of wide-pulse FRBs.

    more » « less
  3. Abstract

    We present results from angular cross correlations between select samples of CHIME/FRB repeaters and galaxies in three photometric galaxy surveys, which have shown correlations with the first CHIME/FRB catalog containing repeating and nonrepeating sources: Wide-field Infrared Survey Explorer (WISE) × SCOS, DESI-BGS, and DESI-LRG. We find a statistically significant correlation (p-value <0.001, after accounting for look-elsewhere factors) between a sample of repeaters with an extragalactic dispersion measure (DM) > 395 pc cm−3and WISE × SCOS galaxies with redshiftz> 0.275. We demonstrate that the correlation arises surprisingly because of a statistical association between FRB 20200320A (extragalactic DM ≈ 550 pc cm−3) and a galaxy group in the same dark matter halo at redshiftz≈ 0.32. We estimate that the host halo, along with an intervening halo at redshiftz≈ 0.12, accounts for at least ∼30% of the extragalactic DM. Our results strongly motivate incorporating galaxy group and cluster catalogs into direct host association pipelines for FRBs with1localization precision, effectively utilizing the two-point information to constrain FRB properties such as their redshift and DM distributions. In addition, we find marginal evidence for a negative correlation at 99.4% confidence limit between a sample of repeating FRBs with baseband data (median extragalactic DM = 354 pc cm−3) and DESI-LRG galaxies with redshift 0.3 ≤z< 0.45, suggesting that the repeaters might be more prone than apparent nonrepeaters to propagation effects in FRB–galaxy correlations due to intervening free electrons over angular scales ∼0.°5.

    more » « less
  4. Abstract

    Integration of dual‐barrel membrane patch‐ion channel probes (MP‐ICPs) to scanning ion conductance microscopy (SICM) holds promise of providing a revolutionized approach of spatially resolved chemical sensing. A series of experiments are performed to further the understanding of the system and to answer some fundamental questions, in preparation for future developments of this approach. First, MP‐ICPs are constructed that contain different types of ion channels including transient receptor potential vanilloid 1 and large conductance Ca2+‐activated K+channels to establish the generalizability of the methods. Next, the capability of the MP‐ICP platforms in single ion channel activity measurements is proved. In addition, the interplay between the SICM barrel and the ICP barrel is studied. For ion channels gated by uncharged ligands, channel activity at the ICP barrel is unaffected by the SICM barrel potential; whereas for ion channels that are gated by charged ligands, enhanced channel activity can be obtained by biasing the SICM barrel at potentials with opposite polarity to the charge of the ligand molecules. Finally, a proof‐of‐principle experiment is performed and site‐specific molecular/ionic flux sensing is demonstrated at single‐ion‐channel level, which show that the MP‐ICP platform can be used to quantify local molecular/ionic concentrations.

    more » « less
  5. Abstract

    The repeating fast radio burst FRB 20190520B is localized to a galaxy atz= 0.241, much closer than expected given its dispersion measure DM = 1205 ± 4 pc cm−3. Here we assess implications of the large DM and scattering observed from FRB 20190520B for the host galaxy’s plasma properties. A sample of 75 bursts detected with the Five-hundred-meter Aperture Spherical radio Telescope shows scattering on two scales: a mean temporal delayτ(1.41 GHz) = 10.9 ± 1.5 ms, which is attributed to the host galaxy, and a mean scintillation bandwidth Δνd(1.41 GHz) = 0.21 ± 0.01 MHz, which is attributed to the Milky Way. Balmer line measurements for the host imply an Hαemission measure (galaxy frame) EMs= 620 pc cm−6× (T/104K)0.9, implying DMHαof order the value inferred from the FRB DM budget,DMh=1121138+89pc cm−3for plasma temperatures greater than the typical value 104K. Combiningτand DMhyields a nominal constraint on the scattering amplification from the host galaxyF˜G=1.50.3+0.8(pc2km)1/3, whereF˜describes turbulent density fluctuations andGrepresents the geometric leverage to scattering that depends on the location of the scattering material. For a two-screen scattering geometry whereτarises from the host galaxy and Δνdfrom the Milky Way, the implied distance between the FRB source and dominant scattering material is ≲100 pc. The host galaxy scattering and DM contributions support a novel technique for estimating FRB redshifts using theτ–DM relation, and are consistent with previous findings that scattering of localized FRBs is largely dominated by plasma within host galaxies and the Milky Way.

    more » « less