skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2025

Title: GRB 190114C: Fireball Energy Budget and Radiative Efficiency Revisited
Abstract The jet composition of gamma-ray bursts (GRBs), as well as how efficiently the jet converts its energy to radiation, are long-standing problems in GRB physics. Here, we reported a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its high fluence (∼4.4 × 10−4erg cm−2) allows us to conduct the time-resolved spectral analysis in great detail and study their variations down to a very short timescale (∼0.1 s) while preserving a high significance. Its prompt emission consists of three well-separated pulses. The first two main pulses (P1andP2) exhibit independently strong thermal components, starting from the third pulse (P3) and extending to the entire afterglow, the spectra are all nonthermal, and the synchrotron plus Compton upscattering model well interprets the observation. By combining the thermal (P1andP2) and the nonthermal (P3) observations based on two different scenarios (global and pulse properties) and following the method described in Zhang et al., we measure the fireball parameters and GRB radiative efficiency with little uncertainties for this GRB. A relevantly high GRB radiative efficiency is obtained based on both the global and pulse properties, suggesting that if GRBs are powered by fireballs, the efficiency can sometimes be high. More interestingly, though the observed parameters are individually different (e.g., the amount of mass loadingM), the radiative efficiency obtained fromP1γ= 36.0% ± 6.5%) andP2γ= 41.1% ± 1.9%) is roughly the same, which implies that the central engine of the same GRB has some common properties.  more » « less
Award ID(s):
2011759
PAR ID:
10548246
Author(s) / Creator(s):
;
Publisher / Repository:
American Astronomical Society
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
972
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gamma-ray bursts (GRBs) are the most powerful explosions in the universe. How efficiently the jet converts its energy to radiation is a long-standing problem, which is poorly constrained. The standard model invokes a relativistic fireball with a bright photosphere emission component. A definitive diagnosis of GRB radiation components and the measurement of GRB radiative efficiency require prompt emission and afterglow data, with high resolution and wide band coverage in time and energy. Here, we present a comprehensive temporal and spectral analysis of the TeV-emitting bright GRB 190114C. Its fluence is one of the highest for all the GRBs that have been detected so far, which allows us to perform a high-resolution study of the prompt emission spectral properties and their temporal evolutions, down to a timescale of about 0.1 s. We observe that each of the initial pulses has a thermal component contributing ∼20% of the total energy and that the corresponding temperature and inferred Lorentz factor of the photosphere evolve following broken power-law shapes. From the observation of the nonthermal spectra and the light curve, the onset of the afterglow corresponding to the deceleration of the fireball is considered to start at ∼6 s. By incorporating the thermal and nonthermal observations, as well as the photosphere and synchrotron radiative mechanisms, we can directly derive the fireball energy budget with little dependence on hypothetical parameters, measuring a ∼16% radiative efficiency for this GRB. With the fireball energy budget derived, the afterglow microphysics parameters can also be constrained directly from the data. 
    more » « less
  2. Abstract The prompt emission mechanism of gamma-ray bursts (GRBs) is still unclear, and the time-resolved spectral analysis of GRBs is a powerful tool for studying their underlying physical processes. We performed a detailed time-resolved spectral analysis of 78 bright long GRB samples detected by Fermi/Gamma-ray Burst Monitor. A total of 1490 spectra were obtained and their properties were studied using a typical Band-shape model. First, the parameter distributions of the time-resolved spectrum are given as follows: the low-energy spectral indexα∼ − 0.72, high-energy spectral indexβ∼ − 2.42, the peak energyEp∼ 221.69 keV, and the energy fluxF∼ 7.49 × 10−6erg cm−2s−1. More than 80% of the bursts exhibit the hardest low-energy spectral index α max exceeding the synchrotron limit (−2/3). Second, the evolution patterns ofαandEpwere statistically analyzed. The results show that for multi-pulse GRBs the intensity-tracking pattern is more common than the hard-to-soft pattern in the evolution of bothEpandα. The hard-to-soft pattern is generally shown in single-pulse GRBs or in the initial pulse of multi-pulse GRBs. Finally, we found a significant positive correlation betweenFandEp, with half of the samples exhibiting a positive correlation betweenFandα. We discussed the spectral evolution of different radiation models. The diversity of spectral evolution patterns indicates that there may be more than one radiation mechanism occurring in the GRB radiation process, including photospheric radiation and synchrotron radiation. However, it may also involve only one radiation mechanism, but more complicated physical details need to be considered. 
    more » « less
  3. Abstract Although gamma ray bursts (GRBs) have been detected for many decades, the lack of knowledge regarding the radiation mechanism that produces the energetic flash of radiation, or prompt emission, from these events has prevented the full use of GRBs as probes of high-energy astrophysical processes. While there are multiple models that attempt to describe the prompt emission, each model can be tuned to account for observed GRB characteristics in the gamma and X-ray energy bands. One energy range that has not been fully explored for the purpose of prompt emission model comparison is that of the optical band, especially with regard to polarization. Here, we use an improved Monte Carlo radiation transfer code to calculate the expected photospheric optical and gamma-ray polarization signatures (Πoptand Πγ, respectively) from a set of two relativistic hydrodynamic long GRB simulations, which emulate a constant and variable jet. We find that time-resolved Πoptcan be large (∼75%) while time-integrated Πoptcan be smaller due to integration over the asymmetries in the GRB jet where optical photons originate; Πγfollows a similar evolution as Πoptwith smaller polarization degrees. We also show that Πoptand Πγagree well with observations in each energy range. Additionally, we make predictions for the expected polarization of GRBs based on their location within the Yonetoku relationship. While improvements can be made to our analyses and predictions, they exhibit the insight that global radiative transfer simulations of GRB jets can provide with respect to current and future observations. 
    more » « less
  4. Context.Dark gamma-ray bursts (GRBs) constitute a significant fraction of the GRB population. In this paper, we present a multi-wavelength analysis (both prompt emission and afterglow) of an intense (3.98  ×  10−5erg cm−2usingFermi-Gamma-Ray Burst Monitor) two-episodic GRB 150309A observed early on until ∼114 days post burst. Despite the strong gamma-ray emission, no optical afterglow was detected for this burst. However, we discovered near-infrared (NIR) afterglow (KS-band), ∼5.2 h post burst, with the CIRCE instrument mounted at the 10.4 m Gran Telescopio Canarias (hereafter, GTC). Aims.We aim to examine the characteristics of GRB 150309A as a dark burst and to constrain other properties using multi-wavelength observations. Methods.We usedFermiobservations of GRB 150309A to understand the prompt emission mechanisms and jet composition. We performed early optical observations using the BOOTES robotic telescope and late-time afterglow observations using the GTC. A potential faint host galaxy was also detected in the optical wavelength using the GTC. We modelled the potential host galaxy of GRB 150309A in order to explore the environment of the burst. Results.The time-resolved spectral analysis ofFermidata indicates a hybrid jet composition consisting of a matter-dominated fireball and magnetic-dominated Poynting flux. The GTC observations of the afterglow revealed that the counterpart of GRB 150309A was very red, withH − KS > 2.1 mag (95% confidence). The red counterpart was not discovered in any bluer filters ofSwiftUVOT/BOOTES, which would be indicative of a high redshift origin. Therefore we discarded this possibility based on multiple arguments, such as spectral analysis of the X-ray afterglow constrainz < 4.15 and a moderate redshift value obtained using the spectral energy distribution (SED) modelling of the potential galaxy. The broadband (X-ray to NIR bands) afterglow SED implies a very dusty host galaxy with a deeply embedded GRB (suggestingAV ≳ 35 mag). Conclusions.The environment of GRB 150309A demands a high extinction towards the line of sight. Demanding dust obscuration is the most probable origin of optical darkness as well as the very red afterglow of GRB 150309A. This result establishes GRB 150309A as the most extinguished GRB known to date. 
    more » « less
  5. Abstract The jet composition in gamma-ray bursts (GRBs) is still an unsolved issue. We try to provide some clues to the issue by analyzing the spectral properties of GRB 160509A and GRB 130427A with a main burst and a postburst. We first perform Bayesian time-resolved spectral analysis and compare the spectral components and spectral properties of the main bursts and postbursts of the two bursts and find that both bursts have the thermal components, and the thermal components are mainly found in the main bursts, while the postbursts are mainly dominated by the nonthermal components. We also find that the low-energy spectral indices of some time bins in the main bursts of these two GRBs exceed the so-called synchronous dead line, and in the postburst, only GRB 160509A has four time bins exceeding the dead line, while none of GRB 130427A exceed the dead line. We then constrain the outflow properties of both bursts and find that the main bursts is consistent with the typical properties of photosphere radiation. Therefore, our results support the transition of the GRB jet component from the fireball to the Poynting-flux-dominated jet. Finally, after analyzing the correlation and parameter evolution of the spectral parameters of the two bursts, we find that the correlations of the spectral parameters have different behaviors in the main bursts and postbursts. The parameter evolution trends of the main bursts and postbursts also show consistent and inconsistent behavior; therefore, we currently cannot determine whether the main bursts and postbursts come from the same origin. 
    more » « less