skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assessing Physical Relationships Between Atmospheric State, Fluxes, and Boundary Layer Stability at McMurdo Station, Antarctica
Abstract Observations at McMurdo Station, Antarctica from 24 November 2015 through 3 January 2017 were used to characterize the physical relationships between boundary layer stability and atmospheric state and fluxes. The basis of this analysis was self‐organizing maps (SOMs), a neural network algorithm, used to identify the range of potential temperature profiles present in the twice‐daily radiosonde data during the ARM (Atmospheric Radiation Measurement) West Antarctic Radiation Experiment (AWARE) campaign. The SOM identified profiles ranging from strongly stable to weakly stable regimes over the lowest 500 m of the atmosphere. It was found that in the winter (MJJA), moderate and strongly stable regimes occur most frequently (61%), while weakly stable regimes dominate in the summer (DJ, 83.4%). The mechanisms responsible for the dominance of different stability regimes in each season were analyzed to determine why these regimes occur with varying frequency throughout the year. This analysis found that wind speed variations and radiative cooling are responsible for the stability observed in the winter, radiative warming, as well as weaker wind speeds, are responsible for summer weak stability, and stability variations in the transition seasons (FMA, SON) are characterized by a change in sign of net radiation with increasing stability, as wind speed changes little across stability regimes. Low‐level jets were observed to occur about 50% of the time below areas of enhanced stability aloft and were observed most frequently in the transition seasons. The boundary layer depth, as determined by the Bulk Richardson number, was found to decrease with increasing stability.  more » « less
Award ID(s):
1745097 1744878
PAR ID:
10369832
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
127
Issue:
15
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Observations collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) provide a detailed description of the impact of thermodynamic and kinematic forcings on atmospheric boundary layer (ABL) stability in the central Arctic. This study reveals that the Arctic ABL is stable and near-neutral with similar frequencies, and strong stability is the most persistent of all stability regimes. MOSAiC radiosonde observations, in conjunction with observations from additional measurement platforms, including a 10 m meteorological tower, ceilometer, microwave radiometer, and radiation station, provide insight into the relationships between atmospheric stability and various atmospheric thermodynamic and kinematic forcings of ABL turbulence and how these relationships differ by season. We found that stronger stability largely occurs in low-wind (i.e., wind speeds are slow), low-radiation (i.e., surface radiative fluxes are minimal) environments; a very shallow mixed ABL forms in low-wind, high-radiation environments; weak stability occurs in high-wind, moderate-radiation environments; and a near-neutral ABL forms in high-wind, high-radiation environments. Surface pressure (a proxy for synoptic staging) partially explains the observed wind speeds for different stability regimes. Cloud frequency and atmospheric moisture contribute to the observed surface radiation budget. Unique to summer, stronger stability may also form when moist air is advected from over the warmer open ocean to over the colder sea ice surface, which decouples the colder near-surface atmosphere from the advected layer, and is identifiable through observations of fog and atmospheric moisture. 
    more » « less
  2. Abstract. The relative importance of changes in radiative forcing (downwelling longwave radiation) and mechanical mixing (20 m wind speed) in controlling boundary layer stability annually and seasonally at five study sites across the Antarctica continent is presented. From near neutral to extremely strong near-surface stability, radiative forcing decreases with increasing stability, as expected, and is shown to be a major driving force behind variations in near-surface stability at all five sites. Mechanical mixing usually decreases with increasing near-surface stability for regimes with weak to extremely strong stability. For the cases where near neutral, very shallow mixed, and weak stability occur, the wind speed in the very shallow mixed case is usually weaker compared to the near neutral and weak stability cases, while radiative forcing is largest for the near neutral cases. This finding is an important distinguishing factor for the unique case where a very shallow mixed layer is present, indicating that weaker mechanical mixing in this case is likely responsible for the shallower boundary layer that defines the very shallow mixed stability regime. For cases with enhanced stability above a layer of weaker near-surface stability, lower downwelling longwave radiation promotes the persistence of the stronger stability aloft, while stronger near-surface winds act to maintain weaker stability immediately near the surface, resulting in this two-layer boundary layer stability regime. 
    more » « less
  3. Abstract Harvesting of crops in a weakly sloping Midwestern field during the Stable Atmospheric Variability and Transport (SAVANT) observation campaign allowed for a systematic investigation of the influence of surface roughness and static stability magnitude on the applicability of the Monin–Obukhov similarity (MOST) and hockey-stick transition (HOST) theories during stable boundary layer periods. We analyze momentum flux and turbulent velocity scale V TKE in three regimes, defined using the gradient Richardson number Ri and flux Richardson number Ri f as regime 1 (0 < Ri ≤ 0.1 and 0 < Ri f ≤ 0.1), regime 2 (0.1 < Ri ≤ 0.23 and 0.1 < Ri f ≤ 0.23), and regime 3 (both Ri and Ri f > 0.23). After harvest, in regime 1, stability varied from near-neutral to weakly stable and both MOST and HOST were applicable to estimate the momentum fluxes and V TKE as a function of mean wind speed. In regime 2, the momentum flux deviated from the MOST linear relationship as stability increased. In regimes 1 and 2, a HOST-defined threshold wind speed V s was identified beyond which V TKE increased linearly with wind speed at a rate of 0.26 for all observation heights. Below this threshold wind speed, V TKE behaved independent of mean wind and observation heights. Alternatively, for preharvest periods, MOST was applicable in regimes 1 and 2 for all heights and HOST was applicable with reduced V s for heights above the crop layer. Regime 3 during pre- and postharvest consisted of strongly stable periods and very weak to weak winds, where MOST was found to be invalid and V TKE remained low and independent of wind speed. The results suggest that roughness due to crops enhances the turbulence generation at lower wind speeds. 
    more » « less
  4. Abstract. The range of boundary layer stability profiles, from the surface to 500 m a.g.l. (above ground level), present in radiosonde observations from two continental-interior (South Pole Station and Dome Concordia Station) and three coastal (McMurdo Station, Georg von Neumayer Station III, and Syowa Station) Antarctic sites, is examined using the self-organizing maps (SOMs) neural network algorithm. A wide range of potential temperature profiles is revealed, from shallow boundary layers with strong near-surface stability to deeper boundary layers with weaker or near-neutral stability, as well as profiles with weaker near-surface stability and enhanced stability aloft, above the boundary layer. Boundary layer regimes were defined based on the range of profiles revealed by the SOM analysis; 20 boundary layer regimes were identified to account for differences in stability near the surface as well as above the boundary layer. Strong, very strong, or extremely strong stability, with vertical potential temperature gradients of 5 to in excess of 30 K per 100 m, occurred more than 80 % of the time at South Pole and Dome Concordia in the winter. Weaker stability was found in the winter at the coastal sites, with moderate and strong stability (vertical potential temperature gradients of 1.75 to 15 K per 100 m) occurring 70 % to 85 % of the time. Even in the summer, moderate and strong stability is found across all five sites, either immediately near the surface or aloft, just above the boundary layer. While the mean boundary layer height at the continental-interior sites was found to be approximately 50 m, the mean boundary layer height at the coastal sites was deeper, around 110 m. Further, a commonly described two-stability-regime system in the Arctic associated with clear or cloudy conditions was applied to the 20 boundary layer regimes identified in this study to understand if the two-regime behavior is also observed in the Antarctic. It was found that moderate and strong stability occur more often with clear- than cloudy-sky conditions, but weaker stability regimes occur almost equally for clear and cloudy conditions. 
    more » « less
  5. Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to evaluate the Coupled Arctic Forecast System (CAFS) model’s ability to simulate the atmospheric boundary layer (ABL) structure in the central Arctic. MOSAiC observations of the lower atmosphere from radiosondes, downwelling longwave radiation (LWD) from a pyranometer, and near-surface wind conditions from a meteorological tower were compared to 6-hourly CAFS output. A self-organizing map (SOM) analysis reveals that CAFS reproduces the range of stability structures identified by the SOM trained with MOSAiC observations of virtual potential temperature (θv) profiles, but not necessarily with the correct frequency or at the correct time. Additionally, the wind speed profiles corresponding to a particular θv profile are not consistent between CAFS and the observations. When categorizing profiles by static stability, it was revealed that CAFS simulates all observed stability regimes, but overrepresents the frequency of near-surface strong stability, and underrepresents the frequency of strong stability between the top of the ABL and 1 km. The 10 m wind speeds corresponding to each stability regime consistently have larger values in CAFS versus observed, and this offset increases with decreasing stability. Whether LWD is over or underestimated in CAFS is dependent on stability regime. Both variables are most greatly overestimated in spring, leading to the largest near-surface θv bias, and the greatest underrepresentation of strong stability in spring. The results of this article serve to highlight the positive aspects of CAFS for representing the ABL and reveal impacts of misrepresentations of physical processes dictating energy, moisture, and momentum transfer in the lower troposphere on the simulation of central Arctic ABL structure and stability. This highlights potential areas for improvement in CAFS and other numerical weather prediction models. The SOM-based analysis especially provides a unique opportunity for process-based model evaluation. 
    more » « less