skip to main content

Title: Review–On Epitaxial Electrodeposition of Co, Cu, and Ru for Interconnect Applications

Epitaxial electrodeposition of Co, Cu and Ru is compared and contrasted. The seed layer for electrodeposition of all three metals was an epitaxial Ru(0001) film that was deposited at an elevated temperature onto a sapphire(0001) substrate and annealed post deposition. The epitaxial orientation relationship of the electrodeposited film and the seed layer, the epitaxial misfit strain, the role of symmetry of the seed layer versus the electrodepositing layer is addressed. In addition, the impact of underpotential deposition on film nucleation, and the growth morphology of the films is discussed. It is shown that epitaxial electrodeposition of metallic films to thicknesses of tens of nanometers is readily achievable.

This paper 1189 was presented during the 241st Meeting of the Electrochemical Society, May 29–June 2, 2022.

more » « less
Award ID(s):
Author(s) / Creator(s):
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Page Range / eLocation ID:
Article No. 082517
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Co electrodeposition was performed onto single crystal Ru(0001) and polycrystalline Ru films to study the influence of such seed layers on the growth of epitaxial Co(0001). The effect of misfit strain on the electrodeposited Co(0001) films was studied using 60 and 10 nm-thick Ru(0001) seed layers, where the misfit strains of the Co layer on the two Ru(0001) seed layers are 7.9% and 9.6%, respectively. Despite a large misfit strain of 7.9%, the planar growth of Co(0001) was achieved up to a thickness of 42 nm before a transition to island growth was observed. Epitaxial Co films electrodeposited onto 10 nm Ru(0001) showed increased roughness when compared with Co electrodeposited onto the 60 nm seed layer. Co electrodeposition onto polycrystalline Ru resulted in a rough, polycrystalline film with faceted growth. Electrochemical experiments and simulations were used to study the influence of [Co2+] and solution pH on the throughput of the electrodeposition process. By increasing [Co2+] from 1 to 20 mM, the deposition rate of Co(0001) increased from 0.23 nm min−1to 0.88 nm min−1at an applied current density of −80μA cm−2.

    more » « less
  2. The electrodeposition of Ru was investigated from solutions of ruthenium(III) nitrosyl sulfate and ruthenium(III) chloride onto seed layers of epitaxial and polycrystalline Ru and epitaxial Au. Using both galvanostatic and potentiostatic deposition modes, metallic Ru was found to electrodeposit as a porous layer comprised of (0001) oriented Ru crystallites, the presence of which was discovered and confirmed by X-ray and scanning transmission and transmission electron microscope (S/TEM) analyses. This finding was independent of the Ru salt and seed layer used. Using X-ray reflectivity (XRR), the average film densityρeffof the porous electrodeposited Ru layer was measured as less than the density of bulk RuρRu,bulk(14.414 g cm−3). Increasing the magnitude of the applied current density from −100μA cm−2to −10 mA cm−2in solutions of Ru nitrosyl sulfate increased theρefffrom 7.4 g cm−3to 9.7 g cm−2while the current efficiency decreased from 9.4% to 4.3%.

    more » « less
  3. We have stabilized epitaxial oxide thin films of transparent, magnetic Ru-doped BaSnO3. Films were grown by pulsed laser deposition and exhibited excellent epitaxy and crystallinity as determined by x-ray diffraction. Epitaxial films of Ru doped BaSnO3 were grown with a ceramic target of nominally 4% Ru doping on the Sn site but resulted in 3% Ru doping in the  lms. Paramagnetic behavior is observed in all  lms with a Curie law dependence on temperature. The field dependence of the magnetization shows a paramagnetic moment that saturates at a value consistent with low spin Ru. Films are also found to be transparent in the visible regime. Together these results demonstrate the realization of highly crystalline, transparent, paramagnetic,epitaxial doped BaSnO3 films. 
    more » « less
  4. Abstract

    Achieving facile nucleation of noble metal films through atomic layer deposition (ALD) is extremely challenging. To this end, η4‐2,3‐dimethylbutadiene ruthenium(0)tricarbonyl (Ru(DMBD)(CO)3), a zero‐valent complex, has recently been reported to achieve good nucleation by ALD at relatively low temperatures and mild reaction conditions. The authors study the growth mechanism of this precursor by in situ quartz‐crystal microbalance and quadrupole mass spectrometry during Ru ALD, complemented by ex situ film characterization and kinetic modeling. These studies reveal that Ru(DMBD)(CO)3produces high‐quality Ru films with excellent nucleation properties. This results in smooth, coalesced films even at low film thicknesses, all important traits for device applications. However, Ru deposition follows a kinetically limited decarbonylation reaction scheme, akin to typical chemical vapor deposition processes, with a strong dependence on both temperature and reaction timescale. The non‐self‐limiting nature of the kinetically driven mechanism presents both challenges for ALD implementation and opportunities for process tuning. By surveying reports of similar precursors, it is suggested that the findings can be generalized to the broader class of zero‐oxidation state carbonyl‐based precursors used in thermal ALD, with insight into the design of effective saturation studies.

    more » « less
  5. We report the molecular beam epitaxy of Bi1−xSbx thin films (0 ≤ x ≤ 1) on sapphire (0001) substrates using a thin (Bi,Sb)2Te3 buffer layer. The characterization of the films using reflection high energy diffraction, x-ray diffraction, atomic force microscopy, and scanning transmission electron microscopy reveals the epitaxial growth of films of reasonable structural quality. This is further confirmed via x-ray diffraction pole figures that determine the epitaxial registry between the thin film and the substrate. We further investigate the microscopic structure of thin films via Raman spectroscopy, demonstrating how the vibrational modes vary as the composition changes and discussing the implications for the crystal structure. We also characterize the samples using electrical transport measurements.

    more » « less