Abstract Therapeutic antibodies, due to their high affinity and specificity toward their biological targets, may demonstrate reduced harmful side effects compared with traditional drug moieties. While most of the as‐yet clinically approved antibody therapeutics have targeted extracellular or membrane‐bound domains, the ability to target intracellular antigens with antibodies opens up tremendous opportunities for imaging, diagnosis, and therapeutic applications. Generally, delivery concerns have limited the ability to target intracellular antigens, as many antibodies cannot easily cross the cell membrane due to their size and surface chemistry. Delivery platforms have been explored to address this issue, including physical methods, fusion protein/peptide techniques, and synthetic carrier‐based systems. This review summarizes the progress of carrier‐based intracellular antibody delivery systems employing synthetic lipids, polymers, and inorganic nanomaterials. Antibodies targeting various epitopes have been loaded through adsorption, conjugation, or physical encapsulation strategies. Successful intracellular deliveries have been demonstrated largely through fluorescence imaging using dye‐labeled antibody cargos. Specific synthetic delivery platforms have great potential for ex vivo and in vivo therapeutic applications. Challenges and opportunities are further discussed for material scientists to explore in this research area.
more »
« less
Approaches for the detection and analysis of antidrug antibodies to biopharmaceuticals: A review
Antibody‐based therapeutic agents and other biopharmaceuticals are now used in the treatment of many diseases. However, when these biopharmaceuticals are administrated to patients, an immune reaction may occur that can reduce the drug's efficacy and lead to adverse side‐effects. The immunogenicity of biopharmaceuticals can be evaluated by detecting and measuring antibodies that have been produced against these drugs, or antidrug antibodies. Methods for antidrug antibody detection and analysis can be important during the selection of a therapeutic approach based on such drugs and is crucial when developing and testing new biopharmaceuticals. This review examines approaches that have been used for antidrug antibody detection, measurement, and characterization. Many of these approaches are based on immunoassays and antigen binding tests, including homogeneous mobility shift assays. Other techniques that have been used for the analysis of antidrug antibodies are capillary electrophoresis, reporter gene assays, surface plasmon resonance spectroscopy, and liquid chromatography‐mass spectrometry. The general principles of each approach will be discussed, along with their recent applications with regards to antidrug antibody analysis.
more »
« less
- Award ID(s):
- 2108881
- PAR ID:
- 10369856
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Separation Science
- Volume:
- 45
- Issue:
- 12
- ISSN:
- 1615-9306
- Format(s):
- Medium: X Size: p. 2077-2092
- Size(s):
- p. 2077-2092
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Antibodies, particularly of the immunoglobulin G (IgG) isotype, are a group of biomolecules that are extensively used as affinity reagents for many applications in research, disease diagnostics, and therapy. Most of these applications require antibodies to be modified with specific functional moieties, including fluorophores, drugs, and proteins. Thus, a variety of methodologies have been developed for the covalent labeling of antibodies. The most common methods stably attach functional molecules to lysine or cysteine residues, which unavoidably results in heterogeneous products that cannot be further purified. In an effort to prepare homogeneous antibody conjugates, bioorthogonal handles have been site-specifically introduced via enzymatic treatment, genetic code expansion, or genetically encoded tagging, followed by functionalization using bioorthogonal conjugation reactions. The resulting homogeneous products have proven superior to their heterogeneous counterparts for both in vitro and in vivo usage. Nevertheless, additional chemical treatment or protein engineering of antibodies is required for incorporation of the bioorthogonal handles, processes that often affect antibody folding, stability, and/or production yield and cost. Accordingly, concurrent with advances in the fields of bioorthogonal chemistry and protein engineering, there is growing interest in site-specifically labeling native (nonengineered) antibodies without chemical or enzymatic treatments. In this review, we highlight recent strategies for producing site-specific native antibody conjugates and provide a comprehensive summary of the merits and disadvantages of these strategies.more » « less
-
null (Ed.)In the global health emergency caused by coronavirus disease 2019 (COVID-19), efficient and specific therapies are urgently needed. Compared with traditional small-molecular drugs, antibody therapies are relatively easy to develop; they are as specific as vaccines in targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); and they have thus attracted much attention in the past few months. This article reviews seven existing antibodies for neutralizing SARS-CoV-2 with 3D structures deposited in the Protein Data Bank (PDB). Five 3D antibody structures associated with the SARS-CoV spike (S) protein are also evaluated for their potential in neutralizing SARS-CoV-2. The interactions of these antibodies with the S protein receptor-binding domain (RBD) are compared with those between angiotensin-converting enzyme 2 and RBD complexes. Due to the orders of magnitude in the discrepancies of experimental binding affinities, we introduce topological data analysis, a variety of network models, and deep learning to analyze the binding strength and therapeutic potential of the 14 antibody–antigen complexes. The current COVID-19 antibody clinical trials, which are not limited to the S protein target, are also reviewed.more » « less
-
Abstract Pemphigus vulgaris (PV) is a blistering autoimmune disease that affects the skin and mucous membranes. The mechanisms by which PV antibodies induce loss of cohesion in keratinocytes are not fully understood. It is accepted that the process starts with antibody binding to desmosomal targets, which leads to its disassembly and subsequent structural changes to cell–cell adhesions. In vitro imaging of desmosome molecules has been used to characterize this initial phase. However, there remains an untapped potential of image analysis in providing us with more in-depth knowledge regarding biophysical changes after antibody binding. Currently, there is no quantitative framework from immunofluorescence images in PV pathology. Here, we seek to establish a correlation of biophysical changes with antibody pathogenicity by examining the effects of PV antibodies on adhesion molecules and the cytoskeletal network. Specifically, we introduced a data-driven approach to quantitatively evaluate perturbations in adhesion molecules following antibody treatment. We identify distinct imaging signatures that mark the impact of antibody binding on the remodeling of adhesion molecules and introduce a pathogenicity score to compare the relative effects of different antibodies. From this analysis, we showed that the biophysical response of keratinocytes to distinct PV antibodies is highly specific, allowing for accurate prediction of their pathogenicity. For instance, the high pathogenicity scores of the PVIgG and AK23 antibodies show strong agreement with their reported PV pathology. Our data-driven approach offers a detailed framework for the action of antibodies in pemphigus and paves the way for the development of effective diagnostic and therapeutic strategies.more » « less
-
Antibody-based therapeutics continue to expand both in the number of products and in their use in patients. These heterogeneous proteins challenge traditional drug characterization strategies, but ion mobility (IM) and mass spectrometry (MS) approaches have eased the challenge of higher-order structural characterization. Energy-dependent IM-MS, e.g., collision-induced unfolding (CIU), has been demonstrated to be sensitive to subtle differences in structure. In this study, we combine a charge-reduction method, cation-to-anion proton-transfer reactions (CAPTR), with energy-dependent IM-MS and varied solution conditions to probe their combined effects on the gas-phase structures of IgG1κ and IgG4κ from human myeloma. CAPTR paired with MS-only analysis improves the confidence of charge-state assignments and the resolution of the interfering protein species. Collision cross-section distributions were determined for each of the charge-reduced products. Similarity scoring was used to quantitatively compare distributions determined from matched experiments analyzing samples of the two antibodies. Relative to workflows using energy-dependent IM-MS without charge-state manipulation, combining CAPTR and energy-dependent IM-MS enhanced the differentiation of these antibodies. Combined, these results indicate that CAPTR can benefit many aspects of antibody characterization and differentiation.more » « less
An official website of the United States government
