Abstract Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.
more »
« less
Are eastern and western monarch butterflies distinct populations? A review of evidence for ecological, phenotypic, and genetic differentiation and implications for conservation
Abstract Monarch butterflies are a species of conservation priority due to declining overwintering populations in both eastern and western North America. Declines in western overwintering monarchs—more than 99.9% since monitoring began—are especially acute. However, the degree to which western monarchs are a distinct biological entity is uncertain. In this review, we focus on phenotypic and genetic differentiation between eastern and western monarchs, with the goal of informing researchers and policy‐makers who are interested in monarch conservation. Eastern and western monarchs occupy distinct environments and show some evidence for phenotypic differentiation, particularly for migration‐associated traits, though population genetic and genomic studies suggest that they are indistinguishable from one another. We suggest future studies that could improve our understanding of differences between eastern and western monarchs. We also discuss the concept of adaptive capacity in eastern and western monarchs as well as non‐migratory populations outside of the monarch's primary North American range. Finally, we discuss the prospect of completely losing migratory monarchs from western North America and what this entails for monarch conservation.
more »
« less
- PAR ID:
- 10369862
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Conservation Science and Practice
- Volume:
- 3
- Issue:
- 7
- ISSN:
- 2578-4854
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
1. Many migratory animals undergo physiological and behavioural changes to prepare for and sustain long‐distance movements. Because insect migrations are common and diverse, studies that examine how migratory insects meet the energetic demands of long‐distance movements are badly needed. 2. Monarch butterflies (Danaus plexippus) migrate up to 4000 km annually from eastern North America to wintering sites in central Mexico. Autumn generation monarchs undergo physiological and behavioural changes in response to environmental cues to initiate migration. In particular, exposure to cooler temperatures and shorter day lengths in early autumn causes monarchs to enter the hormonally induced state of reproductive diapause. 3. This study examined differences in flight‐associated metabolic rate (MR) and flight performance metrics for monarchs experimentally reared under autumn‐like conditions (typically experienced before the southward migration) relative to monarchs reared under summer‐like conditions. 4. Adult monarchs reared under autumn‐like conditions showed lower post‐flight MRs, greater flight efficiency, and lower measures of reproductive activity relative to monarchs reared under summer‐like conditions. Increases in post‐flight metabolism were associated with monarch body weight, age, and flight velocity. 5. These findings suggest that a trans‐generational shift in flight energetics is an important component of the monarch's complex migratory syndrome, and that physiological changes that accompany reproductive diapause facilitate energy conservation during flight.more » « less
-
Abstract Hippodamia convergens—the convergent lady beetle, has been used extensively in augmentative biological control of aphids, thrips, and whiteflies across its native range in North America, and was introduced into South America in the 1950s. OverwinteringH. convergenspopulations from its native western range in the United States are commercially collected and released across its current range in the eastern USA, with little knowledge of the effectiveness of its augmentative biological control. Here we use a novel ddRADseq‐based SNP/haplotype discovery approach to estimate its range‐wide population diversity, differentiation, and recent evolutionary history. Our results indicate (1) significant population differentiation among eastern USA, western USA, and South American populations ofH. convergens, with (2) little to no detectable recent admixture between them, despite repeated population augmentation, and (3) continued recent population size expansion across its range. These results contradict previous findings using microsatellite markers. In light of these new findings, the implications for the effectiveness of augmentative biological control usingH. convergensare discussed. Additionally, because quantifying the non‐target effects of augmentative biological control is a difficult problem in migratory beetles, our results could serve as a cornerstone in improving and predicting the efficacy of future releases ofH. convergensacross its range.more » « less
-
Abstract Environmental heterogeneity in temperate latitudes is expected to maintain seasonally plastic life‐history strategies that include the tuning of morphologies and metabolism that support overwintering. For species that have expanded their ranges into tropical latitudes, it is unclear the extent to which the capacity for plasticity will be maintained or will erode with disuse. The migratory generations of the North American (NA) monarch butterflyDanaus plexippuslead distinctly different lives from their summer generation NA parents and their tropical descendants living in Costa Rica (CR). NA migratory monarchs postpone reproduction, travel thousands of kilometers south to overwinter in Mexico, and subsist on little food for months. Whether recently dispersed populations of monarchs such as those in Costa Rica, which are no longer subject to selection imposed by migration, retain ancestral seasonal plasticity is unclear. To investigate the differences in seasonal plasticity, we reared the NA and CR monarchs in summer and autumn in Illinois, USA, and measured the seasonal reaction norms for aspects of morphology and metabolism related to flight. NA monarchs were seasonally plastic in forewing and thorax size, increasing wing area and thorax to body mass ratio in autumn. While CR monarchs increased thorax mass in autumn, they did not increase the area of the forewing. NA monarchs maintained similar resting and maximal flight metabolic rates across seasons. However, CR monarchs had elevated metabolic rates in autumn. Our findings suggest that the recent expansion of monarchs into habitats that support year‐round breeding may be accompanied by (1) the loss of some aspects of morphological plasticity as well as (2) the underlying physiological mechanisms that maintain metabolic homeostasis in the face of temperature heterogeneity.more » « less
-
Abstract Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation‐by‐distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation‐by‐distance, and substantially lower inbreeding. Using genotype–environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl.more » « less
An official website of the United States government
