skip to main content


Title: Heat shock protein gene expression varies among tissues and populations in free-living birds
Abstract

Climate change is dramatically altering our planet, yet our understanding of mechanisms of thermal tolerance is limited in wild birds. We characterized natural variation in heat shock protein (HSP) gene expression among tissues and populations of free-living Tree Swallows (Tachycineta bicolor). We focused on HSPs because they prevent cellular damage and promote recovery from heat stress. We used quantitative PCR to measure gene expression of 3 HSPs, including those in the HSP70 and HSP90 families that have robust experimental connections to heat in past literature. First, to evaluate how tissues and, by extension, the functions that they mediate, may vary in their thermal protection, we compared HSP gene expression among neural and peripheral tissues. We hypothesized that tissues with particularly vital functions would be more protected from heat as indicated by higher HSP gene expression. We found that brain tissues had consistently higher HSP gene expression compared to the pectoral muscle. Next, we compared HSP gene expression across 4 distinct populations that span over 20° of latitude (>2,300 km). We hypothesized that the more southern populations would have higher HSP gene expression, suggesting greater tolerance of, or experience with, warmer local conditions. We observed largely higher HSP gene expression in more southern populations than northern populations, although this pattern was more striking at the extremes (southern Indiana vs. Alaska), and it was stronger in some brain areas than others (ventromedial telencephalon vs. hypothalamus). These results shed light on the potential mechanisms that may underlie thermal tolerance differences among populations or among tissues.

 
more » « less
Award ID(s):
1656109
NSF-PAR ID:
10369873
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Ornithology
Volume:
139
Issue:
3
ISSN:
0004-8038
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    In a rapidly warming world, exposure to high temperatures may impact fitness, but the gene regulatory mechanisms that link sublethal heat to sexually selected traits are not well understood, particularly in endothermic animals. Our experiment used zebra finches (Taeniopygia guttata), songbirds that experience extreme temperature fluctuations in their native Australia. We exposed captive males to an acute thermal challenge (43°C) compared with thermoneutral (35°C) and lower (27°C) temperatures. We found significantly more heat dissipation behaviours at 43°C, a temperature previously shown to reduce song production and fertility, and more heat retention behaviours at 27°C. Next, we characterized transcriptomic responses in tissues important for mating effort—the posterior telencephalon, for its role in song production, and the testis, for its role in fertility and hormone production. Differential expression of hundreds of genes in the testes, but few in the brain, suggests the brain is less responsive to extreme temperatures. Nevertheless, gene network analyses revealed that expression related to dopaminergic signalling in the brain covaried with heat dissipation behaviours, providing a mechanism by which temporary thermal challenges may alter motivational circuits for song production. In both brain and testis, we observed correlations between thermally sensitive gene networks and individual differences in thermoregulatory behaviour. Although we cannot directly relate these gene regulatory changes to mating success, our results suggest that individual variation in response to thermal challenges could impact sexually selected traits in a warming world.

     
    more » « less
  2. ABSTRACT

    Epigenetic mechanisms may play a central role in mediating phenotypic plasticity, especially during range expansions, when populations face a suite of novel environmental conditions. Individuals may differ in their epigenetic potential (EP; their capacity for epigenetic modifications of gene expression), which may affect their ability to colonize new areas. One form of EP, the number of CpG sites, is higher in introduced house sparrows (Passer domesticus) than in native birds in the promoter region of a microbial surveillance gene, Toll-like Receptor 4 (TLR4), which may allow invading birds to fine-tune their immune responses to unfamiliar parasites. Here, we compared TLR4 gene expression from whole blood, liver and spleen in house sparrows with different EP, first challenging some birds with lipopolysaccharide (LPS), to increase gene expression by simulating a natural infection. We expected that high EP would predict high inducibility and reversibility of TLR4 expression in the blood of birds treated with LPS, but we did not make directional predictions regarding organs, as we could not repeatedly sample these tissues. We found that EP was predictive of TLR4 expression in all tissues. Birds with high EP expressed more TLR4 in the blood than individuals with low EP, regardless of treatment with LPS. Only females with high EP exhibited reversibility in gene expression. Further, the effect of EP varied between sexes and among tissues. Together, these data support EP as one regulator of TLR4 expression.

     
    more » « less
  3. Abstract

    The coordination of traits from individual organs to whole plants is under strong selection because of environmental constraints on resource acquisition and use. However, the tight coordination of traits may provide underlying mechanisms of how locally adapted plant populations can become maladapted because of climate change.

    To better understand local adaptation in intraspecific trait coordination, we studied trait variability in the widely distributed foundation tree species,Populus fremontiiusing a common garden near the mid‐elevational point of this species distribution. We examined 28 traits encompassing four spectra: phenology, leaf economic spectrum (LES), whole‐tree architecture (Corner's Rule) and wood economic spectrum (WES).

    Based on adaptive syndrome theory, we hypothesized that trait expression would be coordinated among and within trait spectra, reflecting local adaptation to either exposure to freeze‐thaw conditions in genotypes sourced from high‐elevation populations or exposure to extreme thermal stress in genotypes sourced from low‐elevation populations.

    High‐elevation genotypes expressed traits within the phenology and WES that limit frost exposure and tissue damage. Specifically, genotypes sourced from high elevations had later mean budburst, earlier mean budset, higher wood densities, higher bark fractions and smaller xylem vessels than their low‐elevation counterparts. Conversely, genotypes sourced from low elevations expressed traits within the LES that prioritized hydraulic efficiency and canopy thermal regulation to cope with extreme heat exposure, including 40% smaller leaf areas, 67% higher stomatal densities and 34% higher mean theoretical maximum stomatal conductance. Low‐elevation genotypes also expressed a lower stomatal control over leaf water potentials that subsequently dropped to pressures that could induce hydraulic failure.

    Synthesis. Our results suggest thatPopulus fremontiiexpresses a high degree of coordination across multiple trait spectra to adapt to local climate constraints on photosynthetic gas exchange, growth and survival. These results, therefore, increase our mechanistic understanding of local adaptation and the potential effects of climate change that in turn, improves our capacity to identify genotypes that are best suited for future restoration efforts.

     
    more » « less
  4. Begun, D (Ed.)
    Abstract Changes in gene regulation at multiple levels may comprise an important share of the molecular changes underlying adaptive evolution in nature. However, few studies have assayed within- and between-population variation in gene regulatory traits at a transcriptomic scale, and therefore inferences about the characteristics of adaptive regulatory changes have been elusive. Here, we assess quantitative trait differentiation in gene expression levels and alternative splicing (intron usage) between three closely related pairs of natural populations of Drosophila melanogaster from contrasting thermal environments that reflect three separate instances of cold tolerance evolution. The cold-adapted populations were known to show population genetic evidence for parallel evolution at the SNP level, and here we find evidence for parallel expression evolution between them, with stronger parallelism at larval and adult stages than for pupae. We also implement a flexible method to estimate cis- vs trans-encoded contributions to expression or splicing differences at the adult stage. The apparent contributions of cis- vs trans-regulation to adaptive evolution vary substantially among population pairs. While two of three population pairs show a greater enrichment of cis-regulatory differences among adaptation candidates, trans-regulatory differences are more likely to be implicated in parallel expression changes between population pairs. Genes with significant cis-effects are enriched for signals of elevated genetic differentiation between cold- and warm-adapted populations, suggesting that they are potential targets of local adaptation. These findings expand our knowledge of adaptive gene regulatory evolution and our ability to make inferences about this important and widespread process. 
    more » « less
  5. Abstract

    Kin selection may act differently on genes inherited from parents (matrigenes and patrigenes), resulting in intragenomic conflict. This conflict can be observed as differential expression of matrigenes and patrigenes, or parent‐specific gene expression (PSGE). In honey bees (Apis mellifera), intragenomic conflict is hypothesized to occur in multiple social contexts. Previously, we found that patrigene‐biased expression in reproductive tissues was associated with increased reproductive potential in worker honey bees, consistent with the prediction that patrigenes are selected to promote selfish behaviour in this context. Here, we examined brain gene expression patterns to determine if PSGE is also found in other tissues. As before, the number of transcripts showing patrigene expression bias was significantly greater in the brains of reproductive vs. sterile workers, while the number of matrigene‐biased transcripts was not significantly different. Twelve transcripts out of the 374 showing PSGE in either tissue showed PSGE in both brain and reproductive tissues; this overlap was significantly greater than expected by chance. However, the majority of transcripts show PSGE only in one tissue, suggesting the epigenetic mechanisms mediating PSGE exhibit plasticity between tissues. There was no significant overlap between transcripts that showed PSGE and transcripts that were significantly differentially expressed. Weighted gene correlation network analysis identified modules which were significantly enriched in both types of transcripts, suggesting that these genes may influence each other through gene networks. Our results provide further support for the kin selection theory of intragenomic conflict, and provide valuable insights into the mechanisms which may mediate this process.

     
    more » « less