skip to main content

Title: How thermal challenges change gene regulation in the songbird brain and gonad: Implications for sexual selection in our changing world

In a rapidly warming world, exposure to high temperatures may impact fitness, but the gene regulatory mechanisms that link sublethal heat to sexually selected traits are not well understood, particularly in endothermic animals. Our experiment used zebra finches (Taeniopygia guttata), songbirds that experience extreme temperature fluctuations in their native Australia. We exposed captive males to an acute thermal challenge (43°C) compared with thermoneutral (35°C) and lower (27°C) temperatures. We found significantly more heat dissipation behaviours at 43°C, a temperature previously shown to reduce song production and fertility, and more heat retention behaviours at 27°C. Next, we characterized transcriptomic responses in tissues important for mating effort—the posterior telencephalon, for its role in song production, and the testis, for its role in fertility and hormone production. Differential expression of hundreds of genes in the testes, but few in the brain, suggests the brain is less responsive to extreme temperatures. Nevertheless, gene network analyses revealed that expression related to dopaminergic signalling in the brain covaried with heat dissipation behaviours, providing a mechanism by which temporary thermal challenges may alter motivational circuits for song production. In both brain and testis, we observed correlations between thermally sensitive gene networks and individual differences in thermoregulatory behaviour. Although we cannot directly relate these gene regulatory changes to mating success, our results suggest that individual variation in response to thermal challenges could impact sexually selected traits in a warming world.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Molecular Ecology
Medium: X Size: p. 3613-3626
["p. 3613-3626"]
Sponsoring Org:
National Science Foundation
More Like this
  1. A major goal in evolutionary biology is to understand how natural variation is maintained in sexually selected and sexually dimorphic traits. Hypotheses to explain genetic variation in sexually selected traits include context-dependent fitness effects, epistatic interactions, and pleiotropic constraints. The house fly, Musca domestica, is a promising system to investigate how these factors affect polymorphism in sexually selected traits. Two common Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural house fly populations, appear to be locally adapted to different thermal habitats, and differentially affect male mating success. Here, we perform a meta-analysis of RNA-seq data which identifies genes encoding odorant binding proteins (in the Obp56h family) as differentially expressed between the heads of males carrying YM and IIIM Differential expression of Obp56h has been associated with variation in male mating behavior in Drosophila melanogaster. We find differences in male mating behavior between house flies carrying the Y chromosomes that are consistent with the relationship between male mating behavior and expression of Obp56h in D. melanogaster. We also find that male mating behaviors in house fly are affected by temperature, and the same temperature differentials further affect the expression of Obp56h genes. However, we show that temperature-dependent effects cannot explain the maintenance of genetic variation for male mating behavior in house fly. Using a network analysis and allele-specific expression measurements, we find evidence that the house fly IIIM chromosome is a trans regulator of Obp56h gene expression. Moreover, we find that Obp56h disproportionately affects the expression of genes on the D. melanogaster chromosome that is homologous to the house fly IIIM chromosome. This provides evidence for a conserved trans regulatory loop involving Obp56h expression that affects male mating behavior in flies. The complex regulatory architecture controlling Obp56h expression suggests that variation in male mating behavior could be maintained by epistasis or pleiotropic constraints. 
    more » « less
  2. Abstract Background

    Sexually dimorphic mating behaviors differ between sexes and involve gonadal hormones and possibly sexually dimorphic gene expression in the brain. However, the associations among the brain, gonad, and sexual behavior in teleosts are still unclear. Here, we utilized germ cells-freetdrd12knockout (KO) zebrafish, and steroid synthesis enzymecyp17a1-deficient zebrafish to investigate the differences and interplays in the brain–gonad–behavior axis, and the molecular control of brain dimorphism and male mating behaviors.


    Tdrd12+/−;cyp17a1+/−double heterozygous parents were crossed to obtaintdrd12−/−;cyp17a1+/+(tdrd12 KO),tdrd12+/+;cyp17a1−/−(cyp17a1 KO), andtdrd12−/−;cyp17a1−/−(double KO) homozygous progenies. Comparative analysis of mating behaviors were evaluated using Viewpoint zebrafish tracking software and sexual traits were thoroughly characterized based on anatomical and histological experiments in these KOs and wild types. The steroid hormone levels (testosterone, 11-ketotestosterone and 17β-estradiol) in the brains, gonads, and serum were measured using ELISA kits. To achieve a higher resolution view of the differences in region-specific expression patterns of the brain, the brains of these KOs, and control male and female fish were dissected into three regions: the forebrain, midbrain, and hindbrain for transcriptomic analysis.


    Qualitative analysis of mating behaviors demonstrated thattdrd12−/−fish behaved in the same manner as wild-type males to trigger oviposition behavior, whilecyp17a1−/−and double knockout (KO) fish did not exhibit these behaviors. Based on the observation of sex characteristics, mating behaviors and hormone levels in these mutants, we found that the maintenance of secondary sex characteristics and male mating behavior did not depend on the presence of germ cells; rather, they depended mainly on the 11-ketotestosterone and testosterone levels secreted into the brain–gonad regulatory axis. RNA-seq analysis of different brain regions revealed that the brain transcript profile oftdrd12−/−fish was similar to that of wild-type males, especially in the forebrain and midbrain. However, the brain transcript profiles ofcyp17a1−/−and double KO fish were distinct from those of wild-type males and were partially biased towards the expression pattern of the female brain. Our results revealed important candidate genes and signaling pathways, such as synaptic signaling/neurotransmission, MAPK signaling, and steroid hormone pathways, that shape brain dimorphism and modulate male mating behavior in zebrafish.


    Our results provide comprehensive analyses and new insights regarding the endogenous interactions in the brain–gonad–behavior axis. Moreover, this study revealed the crucial candidate genes and neural signaling pathways of different brain regions that are involved in modulating brain dimorphism and male mating behavior in zebrafish, which would significantly light up the understanding the neuroendocrine and molecular mechanisms modulating brain dimorphism and male mating behavior in zebrafish and other teleost fish.

    Graphical Abstract 
    more » « less
  3. Abstract

    Temperature influences the expression of a wide range of behavioral traits in ectotherms, including many involved in the initiation of pair formation and mating. Although opportunities to mate are thought to be greatest when male and female activity overlap, sex‐specific behaviors and physiology could result in mismatched thermal optima for male and female courtship. Here, we investigate how conflicts in the thermal sensitivity of male and female courtship activity affect patterns of mating across temperatures inEnchenopa binotatatreehoppers (Hemiptera: Membracidae). These plant‐feeding insects coordinate mating with plant‐borne vibrational signals exchanged in male–female duets prior to pair formation. We manipulated temperature across an ecologically relevant range (18–36ºC) and tested the likelihood of individual male and femaleE. binotatato engage in courtship activity using vibrational playbacks. We then staged male–female mating interactions across the same temperature range and quantified the thermal sensitivity of mating‐related behaviors across stages of mating. Specifically, we measured the timing of duetting, the likelihood for key pre‐copulatory behaviors to occur, whether the pair mated, and copulation duration. We found sex‐specific thermal sensitivity in courtship activity: Males showed a clear peak of activity at intermediate temperatures (27–30ºC), while females showed highest activity at the hotter thermal extreme. Mating rates, courtship duets, and copulatory attempts were less likely to occur at thermal extremes. Also, duetting occurred earlier and copulation was shortest at higher temperatures. Overall, our data suggest that sexes differ in how temperature affects mating‐related activity and some processes involved in mate coordination may be more sensitive than others across variable thermal environments.

    more » « less
  4. Increasingly frequent and intense heatwaves generate new challenges for many organisms. Our understanding of the ecological predictors of thermal vulnerability is improving, yet, at least in endotherms, we are still only beginning to understand one critical component of predicting resilience: exactly how do wild animals cope with sub-lethal heat? In wild endotherms, most prior work focuses on one or a few traits, leaving uncertainty about organismal consequences of heatwaves. Here, we experimentally generated a 2.8°C heatwave for free-living nestling tree swallows (Tachycineta bicolor). Over a week-long period coinciding with the peak of post-natal growth, we quantified a suite of traits to test the hypotheses that (a) behavioral or (b) physiological responses may be sufficient for coping with inescapable heat. Heat-exposed nestlings increased panting and decreased huddling, but treatment effects on panting dissipated over time, even though heat-induced temperatures remained elevated. Physiologically, we found no effects of heat on: gene expression of three heat shock proteins in blood, muscle, and three brain regions; secretion of circulating corticosterone at baseline or in response to handling; and telomere length. Moreover, heat had a positive effect on growth and a marginal, but not significant, positive effect on subsequent recruitment. These results suggest that nestlings were generally buffered from deleterious effects of heat, with one exception: heat-exposed nestlings exhibited lower gene expression for superoxide dismutase, a key antioxidant defense. Despite this one apparent cost, our thorough organismal investigation indicates general resilience to a heatwave that may, in part, stem from behavioral buffering and acclimation. Our approach provides a mechanistic framework that we hope will improve understanding of species persistence in the face of climate change. 
    more » « less
  5. Abstract

    Vulnerability to warming is often assessed using short‐term metrics such as the critical thermal maximum (CTMAX), which represents an organism's ability to survive extreme heat. However, the long‐term effects of sub‐lethal warming are an essential link to fitness in the wild, and these effects are not adequately captured by metrics like CTMAX.

    The meltwater stonefly,Lednia tumana, is endemic to high‐elevation streams of Glacier National Park, MT, USA, and has long been considered acutely vulnerable to climate‐change‐associated stream warming. As a result, in 2019, it was listed as Threatened under the U.S. Endangered Species Act. This presumed vulnerability to warming was challenged by a recent study showing that nymphs can withstand short‐term exposure to temperatures as high as ~27°C. But whether they also tolerate exposure to chronic, long‐term warming remained unclear.

    By measuring fitness‐related traits at several ecologically relevant temperatures over several weeks, we show thatL. tumanacannot complete its life‐cycle at temperatures only a few degrees above what some populations currently experience.

    The temperature at which growth rate was maximized appears to have a detrimental impact on other key traits (survival, emergence success and wing development), thus extending our understanding ofL. tumana's vulnerability to climate change.

    Our results call into question the use of CTMAXas a sole metric of thermal sensitivity for a species, while highlighting the power and complexity of multi‐trait approaches to assessing vulnerability.

    Read the freePlain Language Summaryfor this article on the Journal blog.

    more » « less