skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The ALPINE–ALMA [C ii] Survey: The Infrared–Radio Correlation and Active Galactic Nucleus Fraction of Star-forming Galaxies at z ∼ 4.4–5.9
Abstract We present the radio properties of 66 spectroscopically confirmed normal star-forming galaxies (SFGs) at 4.4 <z< 5.9 in the COSMOS field that were [Cii]-detected in the Atacama Large Millimeter/submillimeter Array Large Program to INvestigate [Cii] at Early times (ALPINE). We separate these galaxies (“Cii-detected-all”) into lower-redshift (“Cii-detected-lz”; 〈z〉 = 4.5) and higher-redshift (“Cii-detected-hz”; 〈z〉 = 5.6) subsamples, and stack multiwavelength imaging for each subsample from X-ray to radio bands. A radio signal is detected in the stacked 3 GHz images of the Cii-detected-all and lz samples at ≳3σ. We find that the infrared–radio correlation of our sample, quantified byqTIR, is lower than the local relation for normal SFGs at a ∼3σsignificance level, and is instead broadly consistent with that of bright submillimeter galaxies at 2 <z< 5. Neither of these samples show evidence of dominant active galactic nucleus activity in their stacked spectral energy distributions (SEDs), UV spectra, or stacked X-ray images. Although we cannot rule out the possible effects of the assumed spectral index and applied infrared SED templates in causing these differences, at least partially, the lower obscured fraction of star formation than at lower redshift can alleviate the tension between our stackedqTIRs and those of local normal SFGs. It is possible that the dust buildup, which primarily governs the infrared emission, in addition to older stellar populations, has not had enough time to occur fully in these galaxies, whereas the radio emission can respond on a more rapid timescale. Therefore, we might expect a lowerqTIRto be a general property of high-redshift SFGs.  more » « less
Award ID(s):
1908422
PAR ID:
10369973
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
935
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 177
Size(s):
Article No. 177
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (Hi), radio surveys to probe the cosmic evolution of Hiin galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep Hisurvey, we report the first untargeted detection of an OHM atz> 0.5, LADUMA J033046.20−275518.1 (nicknamed “Nkalakatha”). The host system, WISEA J033046.26−275518.3, is an infrared-luminous radio galaxy whose optical redshiftz≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshiftzOH= 0.5225 ± 0.0001 rather than Hiat lower redshift. The detected spectral line has 18.4σpeak significance, a width of 459 ± 59 km s−1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103L, placing it among the most luminous OHMs known. The galaxy’s far-infrared luminosityLFIR= (1.576 ±0.013) × 1012Lmarks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts. 
    more » « less
  2. Abstract We report statistically significant detection of Hi21 cm emission from intermediate-redshift (z ≈ 0.2–0.6) galaxies. By leveraging multisightline galaxy survey data from the Cosmic Ultraviolet Baryon Survey and deep radio observations from the MeerKAT Absorption Line Survey, we have established a sample of ≈6000 spectroscopically identified galaxies in 11 distinct fields to constrain the neutral gas content at intermediate redshifts. The galaxies sample a broad range in stellar mass, from log M star / M 8 to log M star / M 11 , with a median of log M star / M med 10 and a wide range in redshift fromz ≈ 0.24 toz ≈ 0.63 with a median of 〈z〉med = 0.44. While no individual galaxies show detectable Hiemission, the emission line signal is detected in the stacked spectra of all subsamples at greater than 4σsignificance. The observed total Hi21 cm line flux translates to a Himass,MH I≈1010M. We find a high Hi-to-stellar-mass ratio ofMHI/Mstar ≈ 6 for low-mass galaxies with log M star / M 9.3 (>3.7σ). For galaxies with log M star / M 10.6 , we findMHI/Mstar ≈ 0.3 (>4.7σ). In addition, the redshift evolution of Himass, 〈MH I〉, in both low- and high-mass field galaxies, inferred from the stacked emission-line signal, aligns well with the expectation from the cosmic star formation history. This suggests that the overall decline in the cosmic star formation activity across the general galaxy population may be connected to a decreasing supply of neutral hydrogen. Finally, our analysis has revealed significant 21 cm signals at distances greater than 75 kpc from these intermediate-redshift galaxies, indicating a substantial reservoir of Higas in their extended surroundings. 
    more » « less
  3. Abstract The Dragonfly galaxy (MRC 0152-209), the most infrared-luminous radio galaxy at redshiftz∼ 2, is a merger system containing a powerful radio source and large displacements of gas. We present kiloparsec-resolution data from the Atacama Large Millimeter/submillimeter Array and the Very Large Array of carbon monoxide (6−5), dust, and synchrotron continuum, combined with Keck integral field spectroscopy. We find that the Dragonfly consists of two galaxies with rotating disks that are in the early phase of merging. The radio jet originates from the northern galaxy and brightens when it hits the disk of the southern galaxy. The Dragonfly galaxy therefore likely appears as a powerful radio galaxy because its flux is boosted into the regime of high-zradio galaxies by the jet–disk interaction. We also find a molecular outflow of (1100 ± 550)Myr−1associated with the radio host galaxy, but not with the radio hot spot or southern galaxy, which is the galaxy that hosts the bulk of the star formation. Gravitational effects of the merger drive a slower and longer-lived mass displacement at a rate of (170 ± 40)Myr−1, but this tidal debris contains at least as much molecular gas mass as the much faster outflow, namelyMH2= (3 ± 1) × 109CO/0.8)M. This suggests that both the active-galactic-nucleus-driven outflow and mass transfer due to tidal effects are important in the evolution of the Dragonfly system. The Keck data show Lyαemission spread across 100 kpc, and Civand Heiiemission across 35 kpc, confirming the presence of a metal-rich and extended circumgalactic medium previously detected in CO(1–0). 
    more » « less
  4. Abstract Despite the ubiquity of clumpy star-forming galaxies at high-redshift, the origin of clumps are still largely unconstrained due to the limited observations that can validate the mechanisms for clump formation. We postulate that if clumps form due to the accretion of metal-poor gas that leads to violent disk instability, clumpy galaxies should have lower gas-phase metallicities compared to nonclumpy galaxies. In this work, we obtain the near-infrared spectrum for 42 clumpy and nonclumpy star-forming galaxies of similar masses, star formation rates, and colors atz ≈ 0.7 using the Gemini Near-Infrared Spectrograph (GNIRS) and infer their gas-phase metallicity from the [Nii]λ6584 and Hαline ratio. We find that clumpy galaxies have lower metallicities compared to nonclumpy galaxies, with an offset in the weighted average metallicity of 0.07 ± 0.02 dex. We also find an offset of 0.06 ± 0.02 dex between clumpy and nonclumpy galaxies in a comparable sample of 23 star-forming galaxies atz ≈ 1.5 using existing data from the FMOS-COSMOS survey. Similarly, lower [Nii]λ6584/Hαratios are typically found in galaxies that have more of their UVrestluminosity originating from clumps, suggesting that clumpier galaxies are more metal-poor. We also derive the intrinsic velocity dispersion and line-of-sight rotational velocity for galaxies from the GNIRS sample. The majority of galaxies haveσ0/vc ≈ 0.2, with no significant difference between clumpy and nonclumpy galaxies. Our result indicates that clump formation may be related to the inflow of metal-poor gas; however, the process that forms them does not necessarily require significant, long-term kinematic instability in the disk. 
    more » « less
  5. Abstract We use the large spectroscopic data set of the MOSFIRE Deep Evolution Field survey to investigate some of the key factors responsible for the elevated ionization parameters (U) inferred for high-redshift galaxies, focusing in particular on the role of star-formation-rate surface density (ΣSFR). Using a sample of 317 galaxies with spectroscopic redshiftszspec≃ 1.9–3.7, we construct composite rest-frame optical spectra in bins of ΣSFRand infer electron densities,ne, using the ratio of the [Oii]λλ3727, 3730 doublet. Our analysis suggests a significant (≃3σ) correlation betweenneand ΣSFR. We further find significant correlations betweenUand ΣSFRfor composite spectra of a subsample of 113 galaxies, and for a smaller sample of 25 individual galaxies with inferences ofU. The increase inne—and possibly also the volume filling factor of dense clumps in Hiiregions—with ΣSFRappear to be important factors in explaining the relationship betweenUand ΣSFR. Further, the increase inneand SFR with redshift at a fixed stellar mass can account for most of the redshift evolution ofU. These results suggest that the gas density, which setsneand the overall level of star formation activity, may play a more important role than metallicity evolution in explaining the elevated ionization parameters of high-redshift galaxies. 
    more » « less