skip to main content


Title: Tuning Resistive Switching Behavior by Controlling Internal Ionic Dynamics for Biorealistic Implementation of Synaptic Plasticity
Abstract

Memristive devices have demonstrated rich switching behaviors that closely resemble synaptic functions and provide a building block to construct efficient neuromorphic systems. It is demonstrated that resistive switching effects are controlled not only by the external field, but also by the dynamics of various internal state variables that facilitate the ionic processes. The internal temperature, for example, works as a second‐state variable to regulate the ion motion and provides the internal timing mechanism for the native implementation of timing‐ and rate‐based learning rules such as spike timing dependent plasticity (STDP). In this work, it is shown that the 2nd state‐variable in a Ta2O5‐based memristor, its internal temperature, can be systematically engineered by adjusting the material properties and device structure, leading to tunable STDP characteristics with different time constants. When combined with an artificial post‐synaptic neuron, the 2nd‐order memristor synapses can spontaneously capture the temporal correlation in the input streaming events.

 
more » « less
Award ID(s):
1915550 1810119
NSF-PAR ID:
10370016
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
8
Issue:
8
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Spiking neural network (SNN) in future neuromorphic architectures requires hardware devices to be not only capable of emulating fundamental functionalities of biological synapse such as spike-timing dependent plasticity (STDP) and spike-rate dependent plasticity (SRDP), but also biodegradable to address current ecological challenges of electronic waste. Among different device technologies and materials, memristive synaptic devices based on natural organic materials have emerged as the favourable candidate to meet these demands. The metal–insulator-metal structure is analogous to biological synapse with low power consumption, fast switching speed and simulation of synaptic plasticity, while natural organic materials are water soluble, renewable and environmental friendly. In this study, the potential of a natural organic material—honey-based memristor for SNNs was demonstrated. The device exhibited forming-free bipolar resistive switching, a high switching speed of 100 ns set time and 500 ns reset time, STDP and SRDP learning behaviours, and dissolving in water. The intuitive conduction models for STDP and SRDP were proposed. These results testified that honey-based memristive synaptic devices are promising for SNN implementation in green electronics and biodegradable neuromorphic systems. 
    more » « less
  2. How do sensory systems optimize detection of behaviorally relevant stimuli when the sensory environment is constantly changing? We addressed the role of spike timing-dependent plasticity (STDP) in driving changes in synaptic strength in a sensory pathway and whether those changes in synaptic strength could alter sensory tuning. It is challenging to precisely control temporal patterns of synaptic activity in vivo and replicate those patterns in vitro in behaviorally relevant ways. This makes it difficult to make connections between STDP-induced changes in synaptic physiology and plasticity in sensory systems. Using the mormyrid species Brevimyrus niger and Brienomyrus brachyistius, which produce electric organ discharges for electrolocation and communication, we can precisely control the timing of synaptic input in vivo and replicate these same temporal patterns of synaptic input in vitro. In central electrosensory neurons in the electric communication pathway, using whole cell intracellular recordings in vitro, we paired presynaptic input with postsynaptic spiking at different delays. Using whole cell intracellular recordings in awake, behaving fish, we paired sensory stimulation with postsynaptic spiking using the same delays. We found that Hebbian STDP predictably alters sensory tuning in vitro and is mediated by NMDA receptors. However, the change in synaptic responses induced by sensory stimulation in vivo did not adhere to the direction predicted by the STDP observed in vitro. Further analysis suggests that this difference is influenced by polysynaptic activity, including inhibitory interneurons. Our findings suggest that STDP rules operating at identified synapses may not drive predictable changes in sensory responses at the circuit level. NEW & NOTEWORTHY We replicated behaviorally relevant temporal patterns of synaptic activity in vitro and used the same patterns during sensory stimulation in vivo. There was a Hebbian spike timing-dependent plasticity (STDP) pattern in vitro, but sensory responses in vivo did not shift according to STDP predictions. Analysis suggests that this disparity is influenced by differences in polysynaptic activity, including inhibitory interneurons. These results suggest that STDP rules at synapses in vitro do not necessarily apply to circuits in vivo. 
    more » « less
  3. Abstract

    Different from nonvolatile memory applications, neuromorphic computing applications utilize not only the static conductance states but also the switching dynamics for computing, which calls for compact dynamical models of memristive devices. In this work, a generalized model to simulate diffusive and drift memristors with the same set of equations is presented, which have been used to reproduce experimental results faithfully. The diffusive memristor is chosen as the basis for the generalized model because it possesses complex dynamical properties that are difficult to model efficiently. A data set from statistical measurements on SiO2:Ag diffusive memristors is collected to verify the validity of the general model. As an application example, spike‐timing‐dependent plasticity is demonstrated with an artificial synapse consisting of a diffusive memristor and a drift memristor, both modeled with this comprehensive compact model.

     
    more » « less
  4. By mimicking biomimetic synaptic processes, the success of artificial intelligence (AI) has been astounding with various applications such as driving automation, big data analysis, and natural-language processing.[1-4] Due to a large quantity of data transmission between the separated memory unit and the logic unit, the classical computing system with von Neumann architecture consumes excessive energy and has a significant processing delay.[5] Furthermore, the speed difference between the two units also causes extra delay, which is referred to as the memory wall.[6, 7] To keep pace with the rapid growth of AI applications, enhanced hardware systems that particularly feature an energy-efficient and high-speed hardware system need to be secured. The novel neuromorphic computing system, an in-memory architecture with low power consumption, has been suggested as an alternative to the conventional system. Memristors with analog-type resistive switching behavior are a promising candidate for implementing the neuromorphic computing system since the devices can modulate the conductance with cycles that act as synaptic weights to process input signals and store information.[8, 9]

    The memristor has sparked tremendous interest due to its simple two-terminal structure, including top electrode (TE), bottom electrode (BE), and an intermediate resistive switching (RS) layer. Many oxide materials, including HfO2, Ta2O5, and IGZO, have extensively been studied as an RS layer of memristors. Silicon dioxide (SiO2) features 3D structural conformity with the conventional CMOS technology and high wafer-scale homogeneity, which has benefited modern microelectronic devices as dielectric and/or passivation layers. Therefore, the use of SiO2as a memristor RS layer for neuromorphic computing is expected to be compatible with current Si technology with minimal processing and material-related complexities.

    In this work, we proposed SiO2-based memristor and investigated switching behaviors metallized with different reduction potentials by applying pure Cu and Ag, and their alloys with varied ratios. Heavily doped p-type silicon was chosen as BE in order to exclude any effects of the BE ions on the memristor performance. We previously reported that the selection of TE is crucial for achieving a high memory window and stable switching performance. According to the study which compares the roles of Cu (switching stabilizer) and Ag (large switching window performer) TEs for oxide memristors, we have selected the TE materials and their alloys to engineer the SiO2-based memristor characteristics. The Ag TE leads to a larger memory window of the SiO2memristor, but the device shows relatively large variation and less reliability. On the other hand, the Cu TE device presents uniform gradual switching behavior which is in line with our previous report that Cu can be served as a stabilizer, but with small on/off ratio.[9] These distinct performances with Cu and Ag metallization leads us to utilize a Cu/Ag alloy as the TE. Various compositions of Cu/Ag were examined for the optimization of the memristor TEs. With a Cu/Ag alloying TE with optimized ratio, our SiO2based memristor demonstrates uniform switching behavior and memory window for analog switching applications. Also, it shows ideal potentiation and depression synaptic behavior under the positive/negative spikes (pulse train).

    In conclusion, the SiO2memristors with different metallization were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of memristor, we integrated Cu, Ag and Cu/Ag alloy as TEs and compared the switch characteristics. Our encouraging results clearly demonstrate that SiO2with Cu/Ag is a promising memristor device with synaptic switching behavior in neuromorphic computing applications.

    Acknowledgement

    This work was supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    References

    [1] Younget al.,IEEE Computational Intelligence Magazine,vol. 13, no. 3, pp. 55-75, 2018.

    [2] Hadsellet al.,Journal of Field Robotics,vol. 26, no. 2, pp. 120-144, 2009.

    [3] Najafabadiet al.,Journal of Big Data,vol. 2, no. 1, p. 1, 2015.

    [4] Zhaoet al.,Applied Physics Reviews,vol. 7, no. 1, 2020.

    [5] Zidanet al.,Nature Electronics,vol. 1, no. 1, pp. 22-29, 2018.

    [6] Wulfet al.,SIGARCH Comput. Archit. News,vol. 23, no. 1, pp. 20–24, 1995.

    [7] Wilkes,SIGARCH Comput. Archit. News,vol. 23, no. 4, pp. 4–6, 1995.

    [8] Ielminiet al.,Nature Electronics,vol. 1, no. 6, pp. 333-343, 2018.

    [9] Changet al.,Nano Letters,vol. 10, no. 4, pp. 1297-1301, 2010.

    [10] Qinet al., Physica Status Solidi (RRL) - Rapid Research Letters, pssr.202200075R1, In press, 2022.

     
    more » « less
  5. In spike-timing-dependent plasticity (STDP), synap-tic weights are modified according to the relative time difference between pre and post-synaptic spikes of spiking neural network (SNN). A triplet STDP model was proposed since this model can better take account of a series of spikes and thus more closely mimic the activity in biological neural systems. Circuit that can switch between different STDP rules was also introduced to improve the range of STDP applications. To apply the advantages of triplet STDP to various tasks, a mixed-signal triplet reconfigurable STDP circuit and its hardware prototype are proposed in this paper. The performance analysis of the STDP training algorithm is carried out with a hardware testbench as well as Pytorch-based SNN. This triplet STDP design achieves 3.28% and 3.63% higher accuracy than the pair STDP learning rule through datasets such as MNIST and CIFAR-10. Our design shows one of the best reconfigurability while keeping a relatively low energy per spike operation (SOP) through the performance comparison with the state of the arts. 
    more » « less