skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bubble‐pen lithography: Fundamentals and applications: Nanoscience: Special Issue Dedicated to Professor Paul S. Weiss
Abstract Developing on‐chip functional devices requires reliable fabrication methods with high resolution for miniaturization, desired components for enhanced performance, and high throughput for fast prototyping and mass production. Recently, laser‐based bubble‐pen lithography (BPL) has been developed to enable sub‐micron linewidths, in situ synthesis of custom materials, and on‐demand patterning for various functional components and devices. BPL exploits Marangoni convection induced by a laser‐controlled microbubble to attract, accumulate, and immobilize particles, ions, and molecules onto different substrates. Recent years have witnessed tremendous progress in theory, engineering, and application of BPL, which motivated us to write this review. First, an overview of experimental demonstrations and theoretical understandings of BPL is presented. Next, we discuss the advantages of BPL and its diverse applications in quantum dot displays, biological and chemical sensing, clinical diagnosis, nanoalloy synthesis, and microrobotics. We conclude this review with our perspective on the challenges and future directions of BPL.  more » « less
Award ID(s):
2001650 1761743
PAR ID:
10370021
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Aggregate
Volume:
3
Issue:
4
ISSN:
2692-4560
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Laser based additive manufacturing (AM) methods, that incorporate a high-density laser to sinter, melt, or solidify the desired material, have developed into an ideal technology for the design and fabrication of robust and highly customizable functional devices which aim to address key challenges in the aerospace, biomedical, and defense sectors. Recent advancements in powder bed fusion (PBF) approaches, such as selective laser sintering (SLS) and melting (SLM) have significantly improved the range of printable materials, minimum feature size, and microstructure evolution, endowing precise control over the physical properties of the final printed part. Furthermore, studies on novel photoresist materials and laser scanning strategies used during multiphoton lithography (MPL) approaches indicated that nanoscale spatial resolution could be achieved, allowing for the design of intricate biomedical implants or smooth optical devices. This chapter focuses on an extensive review of current research being conducted on laser-based AM technologies highlighting the current compatible materials and applications of SLS, SLM, and MLP printed functional devices. Future perspectives and notable challenges of the laser-based AM technologies are discussed in detail with the purpose of identifying critical research areas for each methodology. 
    more » « less
  2. Abstract Three-dimensional structure fabrication using discrete building blocks provides a versatile pathway for the creation of complex nanophotonic devices. The processing of individual components can generally support high-resolution, multiple-material, and variegated structures that are not achievable in a single step using top-down or hybrid methods. In addition, these methods are additive in nature, using minimal reagent quantities and producing little to no material waste. In this article, we review the most promising technologies that build structures using the placement of discrete components, focusing on laser-induced transfer, light-directed assembly, and inkjet printing. We discuss the underlying principles and most recent advances for each technique, as well as existing and future applications. These methods serve as adaptable platforms for the next generation of functional three-dimensional nanophotonic structures. 
    more » « less
  3. Abstract High entropy oxides are a class of materials distinguished by the use of configurational entropy to drive material synthesis. These materials are being examined for their exciting physiochemical properties and hold promise in numerous fields, such as chemical sensing, electronics, and catalysis. Patterning and integration of high entropy materials into devices and platforms can be difficult due to their thermal sensitivity and incompatibility with many conventional thermally-based processing techniques. In this work, we present a laser-based technique, laser-induced thermal voxels, that combines the synthesis and patterning of high entropy oxides into a single process step, thereby allowing patterning of high entropy materials directly onto substrates. As a proof-of-concept, we target the synthesis and patterning of a well-characterized rock salt-phase high entropy oxide, (Mg0.2Co0.2Ni0.2Cu0.2Zn0.2)O, as well as a spinel-phase high entropy oxide, (Mg0.2Ni0.2Co0.2Cu0.2Zn0.2)Cr2O4. We show through electron microscopy and x-ray analysis that the materials created are atomically homogenous and are primarily of the rock salt or spinel phase. These findings show the efficacy of laser induced thermal voxel processing for the synthesis and patterning of high entropy materials and enable new routes for integration of high entropy materials within microscale platform and devices. 
    more » « less
  4. Colloidal nanoparticles have been widely studied and proven to have unique and superior properties compared to their bulk form and are attractive building blocks for diverse technologies, including energy conversion and storage, sensing, electronics, etc. However, transforming colloidal nanoparticles into functional devices while translating their unique properties from the nanoscale to the macroscale remains a major challenge. The development of advanced manufacturing methodologies that can convert functional nanomaterials into high-performance devices in a scalable, controllable and affordable manner presents great research opportunities and challenges for the next several decades. One promising approach to fabricate functional devices from nanoscale building blocks is additive manufacturing, such as 2D and 3D printing, owing to their capability of fast prototyping and versatile fabrication. Here, we review recent progress and methodologies for printing functional devices using colloidal nanoparticle inks with an emphasis on 2D nanomaterial-based inks. This review provides a comprehensive overview on four important and interconnected topics, including nanoparticle synthesis, ink formulation, printing methods, and device applications. New research opportunities as well as future directions are also discussed. 
    more » « less
  5. Abstract 2D materials have exceptional physical and chemical characteristics, which makes them attractive for wearable technology. These characteristics include high carrier mobility, outstanding mechanical performance, abundant chemistry, and excellent electrostatic tunability. However, due to the high electron doping effect of interfacial charge impurities and intrinsic defects, most reported 2D materials are n‐type. Complementary electronic devices and high‐performance wearable sensors necessitate the development ofp‐type 2D semiconductors, which have superior electrocatalytic performance in oxidative processes compared to their n‐type counterparts. This review paper thoroughly accounts for recent advancements in 2Dp‐type semiconductor‐based wearable sensors, covering basic understandings, synthesis and fabrication, functional devices, and sensor performance insights. Finally, challenges and future opportunities for 2Dp‐type semiconductor‐based wearable sensors are discussed. 
    more » « less