skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2001650

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Optical tweezers have profound importance across fields ranging from manufacturing to biotechnology. However, the requirement of refractive index contrast and high laser power results in potential photon and thermal damage to the trapped objects, such as nanoparticles and biological cells. Optothermal tweezers have been developed to trap particles and biological cells via opto-thermophoresis with much lower laser powers. However, the intense laser heating and stringent requirement of the solution environment prevent their use for general biological applications. Here, we propose hypothermal opto-thermophoretic tweezers (HOTTs) to achieve low-power trapping of diverse colloids and biological cells in their native fluids. HOTTs exploit an environmental cooling strategy to simultaneously enhance the thermophoretic trapping force at sub-ambient temperatures and suppress the thermal damage to target objects. We further apply HOTTs to demonstrate the three-dimensional manipulation of functional plasmonic vesicles for controlled cargo delivery. With their noninvasiveness and versatile capabilities, HOTTs present a promising tool for fundamental studies and practical applications in materials science and biotechnology. 
    more » « less
  2. Abstract The collective motion observed in living active matter, such as fish schools and bird flocks, is characterized by its dynamic and complex nature, involving various moving states and transitions. By tailoring physical interactions or incorporating information exchange capabilities, inanimate active particles can exhibit similar behavior. However, the lack of synchronous and arbitrary control over individual particles hinders their use as a test system for the study of more intricate collective motions in living species. Herein, a novel optical feedback control system that enables the mimicry of collective motion observed in living objects using active particles is proposed. This system allows for the experimental investigation of the velocity alignment, a seminal model of collective motion (known as the Vicsek model), in a microscale perturbed environment with controllable and realistic conditions. The spontaneous formation of different moving states and dynamic transitions between these states is observed. Additionally, the high robustness of the active‐particle group at the critical density under the influence of different perturbations is quantitatively validated. These findings support the effectiveness of velocity alignment in real perturbed environments, thereby providing a versatile platform for fundamental studies on collective motion and the development of innovative swarm microrobotics. 
    more » « less
  3. Abstract Charging of interfaces between water and hydrophobic media is a mysterious feature whose nature and origin have been under debate. Here, we investigate the fundamentals of the interfacial behaviors of water by employing opto-thermophoretic tweezers to study temperature-gradient-induced perturbation of dipole arrangement at water/oil interfaces. With surfactant-free perfluoropentane-in-water emulsions as a model interface, additional polar organic solvents are introduced to systematically modify the structural aspects of the interface. Through our experimental measurements on the thermophoretic behaviors of oil droplets under a light-generated temperature gradient, in combination with theoretical analysis, we propose that water molecules and mobile negative charges are present at the water/oil interfaces with specific dipole arrangement to hydrate oil droplets, and that this arrangement is highly susceptible to the thermal perturbation due to the mobility of the negative charges. These findings suggest a potential of opto-thermophoresis in probing aqueous interfaces and could enrich understanding of the interfacial behaviors of water. 
    more » « less
  4. Abstract Subwavelength optical resonators with spatiotemporal control of light are essential to the miniaturization of optical devices. In this work, chemically synthesized transition metal dichalcogenide (TMDC) nanowires are exploited as a new type of dielectric nanoresonators to simultaneously support pronounced excitonic and Mie resonances. Strong light–matter couplings and tunable exciton polaritons in individual nanowires are demonstrated. In addition, the excitonic responses can be reversibly modulated with excellent reproducibility, offering the potential for developing tunable optical nanodevices. Being in the mobile colloidal state with highly tunable optical properties, the TMDC nanoresonators will find promising applications in integrated active optical devices, including all‐optical switches and sensors. 
    more » « less
  5. Abstract Developing on‐chip functional devices requires reliable fabrication methods with high resolution for miniaturization, desired components for enhanced performance, and high throughput for fast prototyping and mass production. Recently, laser‐based bubble‐pen lithography (BPL) has been developed to enable sub‐micron linewidths, in situ synthesis of custom materials, and on‐demand patterning for various functional components and devices. BPL exploits Marangoni convection induced by a laser‐controlled microbubble to attract, accumulate, and immobilize particles, ions, and molecules onto different substrates. Recent years have witnessed tremendous progress in theory, engineering, and application of BPL, which motivated us to write this review. First, an overview of experimental demonstrations and theoretical understandings of BPL is presented. Next, we discuss the advantages of BPL and its diverse applications in quantum dot displays, biological and chemical sensing, clinical diagnosis, nanoalloy synthesis, and microrobotics. We conclude this review with our perspective on the challenges and future directions of BPL. 
    more » « less
  6. Abstract Optical spectroscopy and imaging techniques play important roles in many fields such as disease diagnosis, biological study, information technology, optical science, and materials science. Over the past decade, machine learning (ML) has proved promising in decoding complex data, enabling rapid and accurate analysis of optical spectra and images. This review aims to shed light on various ML algorithms for optical data analysis with a focus on their applications in a wide range of fields. The goal of this work is to sketch the validity of ML‐based optical data decoding. The review concludes with an outlook on unaddressed problems and opportunities in this emerging subject that interfaces optics, data science, and ML. 
    more » « less
  7. Abstract The capabilities of manipulating and analyzing biological cells, bacteria, viruses, deoxyribonucleic acids (DNAs), and proteins at high resolution are significant in understanding biology and enabling early disease diagnosis. The progress in developments and applications of plasmonic nanotweezers and nanosensors is discussed, where the plasmon‐enhanced light‐matter interactions at the nanoscale improve the optical manipulation and analysis of biological objects. Selected examples are presented to illustrate their design and working principles. In the context of plasmofluidics, which merges plasmonics and fluidics, the integration of plasmonic nanotweezers and nanosensors with microfluidic systems for point‐of‐care (POC) applications is envisioned. Perspectives on the challenges and opportunities in further developing and applying the plasmofluidic POC devices are provided. 
    more » « less
  8. Abstract The homogeneous exciton linewidth, which captures the coherent quantum dynamics of an excitonic state, is a vital parameter in exploring light–matter interactions in 2D transition metal dichalcogenides (TMDs). An efficient control of the exciton linewidth is of great significance, and in particular of its intrinsic linewidth, which determines the minimum timescale for the coherent manipulation of excitons. However, such a control is rarely achieved in TMDs at room temperature (RT). While the intrinsic A exciton linewidth is down to 7 meV in monolayer WS2, the reported RT linewidth is typically a few tens of meV due to inevitable homogeneous and inhomogeneous broadening effects. Here, it is shown that a 7.18 meV near‐intrinsic linewidth can be observed at RT when monolayer WS2is coupled with a moderate‐refractive‐index hydrogenated silicon nanosphere in water. By boosting the dynamic competition between exciton and trion decay channels in WS2through the nanosphere‐supported Mie resonances, the coherent linewidth can be tuned from 35 down to 7.18 meV. Such modulation of exciton linewidth and its associated mechanism are robust even in presence of defects, easing the sample quality requirement and providing new opportunities for TMD‐based nanophotonics and optoelectronics. 
    more » « less
  9. Abstract High‐sensitivity detection of minute quantities or concentration variations of analytes of clinical importance is critical for biosensing to ensure accurate disease diagnostics and reliable health monitoring. A variety of sensitivity‐improving concepts have been proposed from chemical, physical, and biological perspectives. In this review, elements that are responsible for sensitivity enhancement are classified and discussed in accordance with their operating steps in a typical biosensing workflow that runs through sampling, analyte recognition, and signal transduction. With a focus on optical biosensing, exemplary sensitivity‐improving strategies are introduced, which can be developed into “plug‐and‐play” modules for many current and future sensors, and discuss their mechanisms to enhance biosensing performance. Three major strategies are covered: i) amplification of signal transduction by polymerization and nanocatalysts, ii) diffusion‐limit‐breaking systems for enhancing sensor–analyte contact and subsequent analyte recognition by fluid‐mixing and analyte‐concentrating, and iii) combined approaches that utilize renal concentration at the sampling and recognition steps and chemical signal amplification at the signal transduction step. 
    more » « less
  10. Abstract A goal in the field of nanoscale optics is the fabrication of nanostructures with strong directional light scattering at visible frequencies. Here, the synthesis of Mie‐resonant core–shell particles with overlapping electric and magnetic dipole resonances in the visible spectrum is demonstrated. The core consists of silicon surrounded by a lower index silicon oxynitride (SiOxNy) shell of an adjustable thickness. Optical spectroscopies coupled to Mie theory calculations give the first experimental evidence that the relative position and intensity of the magnetic and electric dipole resonances are tuned by changing the core–shell architecture. Specifically, coating a high‐index particle with a low‐index shell coalesces the dipoles, while maintaining a high scattering efficiency, thus generating broadband forward scattering. This synthetic strategy opens a route toward metamaterial fabrication with unprecedented control over visible light manipulation. 
    more » « less