skip to main content


Title: Evidence for C and Mg variations in the GD-1 stellar stream
ABSTRACT

Dynamically cold stellar streams are the relics left over from globular cluster dissolution. These relics offer a unique insight into a now fully disrupted population of ancient clusters in our Galaxy. Using a combination of Gaia eDR3 proper motions, optical and near-UV colours, we select a sample of likely Red Giant Branch stars from the GD-1 stream for medium-low resolution spectroscopic follow-up. Based on radial velocity and metallicity, we are able to find 14 new members of GD-1, 5 of which are associated with the spur and blob/cocoon off-stream features. We measured C-abundances to probe for abundance variations known to exist in globular clusters. These variations are expected to manifest in a subtle way in globular clusters with such low masses ($\sim 10^4\,{\rm ~\textrm {M}_\odot }$) and metallicities ([Fe/H] ∼ −2.1 dex). We find that the C-abundances of the stars in our sample display a small but significant (3σ level) spread. Furthermore, we find ∼3σ variation in Mg-abundances among the stars in our sample that have been observed by APOGEE. These abundance patterns match the ones found in Galactic globular clusters of similar metallicity. Our results suggest that GD-1 represents another fully disrupted low-mass globular cluster where light-element abundance spreads have been found.

 
more » « less
NSF-PAR ID:
10370087
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5802-5812
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We present the first detailed chemical-abundance analysis of stars from the dwarf-galaxy stellar stream Wukong/LMS-1 covering a wide metallicity range ($-3.5 \lt \rm [Fe/H] \lesssim -1.3$). We find abundance patterns that are effectively indistinguishable from the bulk of Indus and Jhelum, a pair of smaller stellar streams proposed to be dynamically associated with Wukong/LMS-1. We confirmed a carbon-enhanced metal-poor star ($\rm [C/Fe] \gt +0.7$ and $\rm [Fe/H] \sim -2.9$) in Wukong/LMS-1 with strong enhancements in Sr, Y, and Zr, which is peculiar given its solar-level [Ba/Fe]. Wukong/LMS-1 stars have high abundances of α elements up to $\rm [Fe/H] \gtrsim -2$, which is expected for relatively massive dwarfs. Towards the high-metallicity end, Wukong/LMS-1 becomes α-poor, revealing that it probably experienced fairly standard chemical evolution. We identified a pair of N- and Na-rich stars in Wukong/LMS-1, reminiscent of multiple stellar populations in globular clusters. This indicates that this dwarf galaxy contained at least one globular cluster that was completely disrupted in addition to two intact ones previously known to be associated with Wukong/LMS-1, which is possibly connected to similar evidence found in Indus. From these ≥3 globular clusters, we estimate the total mass of Wukong/LMS-1 to be ${\approx }10^{10} \, \mathrm{M}_\odot$, representing ∼1 per cent of the present-day Milky Way. Finally, the [Eu/Mg] ratio in Wukong/LMS-1 continuously increases with metallicity, making this the first example of a dwarf galaxy where the production of r-process elements is clearly dominated by delayed sources, presumably neutron-star mergers.

     
    more » « less
  2. ABSTRACT

    Using spectra obtained with the VLT/FORS2 and Gemini-S/GMOS-S instruments, we have investigated carbon, nitrogen, and sodium abundances in a sample of red giant members of the Small Magellanic Cloud star cluster Kron 3. The metallicity and luminosity of the cluster are comparable to those of Galactic globular clusters but it is notably younger (age ≈ 6.5 Gyr). We have measured the strengths of the CN and CH molecular bands, finding a bimodal CN band-strength distribution and a CH/CN anticorrelation. Application of spectrum synthesis techniques reveals that the difference in the mean [N/Fe] and [C/Fe] values for the CN-strong and CN-weak stars are Δ <[N/Fe]> = 0.63 ± 0.16 dex and Δ <[C/Fe]> = −0.01 ± 0.07 dex after applying corrections for evolutionary mixing. We have also measured sodium abundances from the Na D lines finding an observed range in [Na/Fe] of ∼0.6 dex that correlates positively with the [N/Fe] values and a Δ <[Na/Fe]> = 0.12 ± 0.12 dex. While the statistical significance of the sodium abundance difference is not high, the observed correlation between the Na and N abundances supports its existence. The outcome represents the first star-by-star demonstration of correlated abundance variations involving sodium in an intermediate-age star cluster. The results add to existing photometric and spectroscopic indications of the presence of multiple populations in intermediate-age clusters with masses in excess of ∼105 M⊙. It confirms that the mechanism(s) responsible for the multiple populations in ancient globular clusters cannot solely be an early cosmological effect applying only in old clusters.

     
    more » « less
  3. ABSTRACT

    This study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2). We employ the Brussels Automatic Code for Characterizing High accUracy Spectra (BACCHUS) code to provide line-by-line elemental-abundances for Fe-peak (Fe, Ni), α-(O, Mg, Si, Ca, Ti), light-(C, N), odd-Z (Al), and the s-process element (Ce) for the four stars with high-signal-to-noise ratios. This is the first reliable measure of the CNO abundances for NGC 6558. Our analysis yields a mean metallicity for NGC 6558 of 〈[Fe/H]〉 = −1.15 ± 0.08, with no evidence for a metallicity spread. We find a Solar Ni abundance, 〈[Ni/Fe]〉 ∼ +0.01, and a moderate enhancement of α-elements, ranging between +0.16 and <+0.42, and a slight enhancement of the s-process element 〈[Ce/Fe]〉 ∼ +0.19. We also found low levels of 〈[Al/Fe]〉 ∼ +0.09, but with a strong enrichment of nitrogen, [N/Fe] > +0.99, along with a low level of carbon, [C/Fe] < −0.12. This behaviour of Nitrogen-Carbon is a typical chemical signature for the presence of multiple stellar populations in virtually all GCs; this is the first time that it is reported in NGC 6558. We also observed a remarkable consistency in the behaviour of all the chemical species compared to the other CAPOS bulge GCs of the same metallicity.

     
    more » « less
  4. Abstract

    Stellar streams in the Galactic halo are useful probes of the assembly of galaxies like the Milky Way. Many tidal stellar streams that have been found in recent years are accompanied by a known progenitor globular cluster or dwarf galaxy. However, the Orphan–Chenab (OC) stream is one case where a relatively narrow stream of stars has been found without a known progenitor. In an effort to find the parent of the OC stream, we use astrometry from the early third data release of ESA’s Gaia mission (Gaia EDR3) and radial velocity information from the Sloan Digital Sky Survey (SDSS)-IV Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to find up to 13 stars that are likely members of the OC stream. We use the APOGEE survey to study the chemical nature (for up to 10 stars) of the OC stream in theα(O, Mg, Ca, Si, Ti, and S), odd-Z(Al, K, and V), Fe-peak (Fe, Ni, Mn, Co, and Cr), and neutron-capture (Ce) elemental groups. We find that the stars that make up the OC stream are not consistent with a monometallic population and have a median metallicity of −1.92 dex with a dispersion of 0.28 dex. Our results also indicate that the α elements are depleted compared to the known Milky Way populations and that its [Mg/Al] abundance ratio is not consistent with second-generation stars from globular clusters. The detailed chemical pattern of these stars, namely the [α/Fe]–[Fe/H] plane and the metallicity distribution, indicates that the OC stream progenitor is very likely to be a dwarf spheroidal galaxy with a mass of ∼106M.

     
    more » « less
  5. ABSTRACT We investigate the Fe, C, N, O, Mg, Al, Si, K, Ca, Ce, and Nd abundances of 2283 red giant stars in 31 globular clusters from high-resolution spectra observed in both the Northern and Southern hemisphere by the SDSS-IV APOGEE-2 survey. This unprecedented homogeneous data set, largest to date, allows us to discuss the intrinsic Fe spread, the shape, and statistics of Al-Mg and N-C anti-correlations as a function of cluster mass, luminosity, age, and metallicity for all 31 clusters. We find that the Fe spread does not depend on these parameters within our uncertainties including cluster metallicity, contradicting earlier observations. We do not confirm the metallicity variations previously observed in M22 and NGC 1851. Some clusters show a bimodal Al distribution, while others exhibit a continuous distribution as has been previously reported in the literature. We confirm more than two populations in ω Cen and NGC 6752, and find new ones in M79. We discuss the scatter of Al by implementing a correction to the standard chemical evolution of Al in the Milky Way. After correction, its dependence on cluster mass is increased suggesting that the extent of Al enrichment as a function of mass was suppressed before the correction. We observe a turnover in the Mg-Al anticorrelation at very low Mg in ω Cen, similar to the pattern previously reported in M15 and M92. ω Cen may also have a weak K-Mg anticorrelation, and if confirmed, it would be only the third cluster known to show such a pattern. 
    more » « less