skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Affinity Host–Guest Recognition for Efficient Assembly and Enzymatic Responsiveness of DNA Nanostructures
Abstract The combination of multiple orthogonal interactions enables hierarchical complexity in self‐assembled nanoscale materials. Here, efficient supramolecular polymerization of DNA origami nanostructures is demonstrated using a multivalent display of small molecule host–guest interactions. Modification of DNA strands with cucurbit[7]uril (CB[7]) and its adamantane guest, yielding a supramolecular complex with an affinity of order 1010m−1, directs hierarchical assembly of origami monomers into 1D nanofibers. This affinity regime enables efficient polymerization; a lower‐affinity β‐cyclodextrin–adamantane complex does not promote extended structures at a similar valency. Finally, the utility of the high‐affinity CB[7]–adamantane interactions is exploited to enable responsive enzymatic actuation of origami nanofibers assembled using peptide linkers. This work demonstrates the power of high‐affinity CB[7]–guest recognition as an orthogonal axis to drive self‐assembly in DNA nanotechnology.  more » « less
Award ID(s):
1944875
PAR ID:
10469739
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Small
ISSN:
1613-6810
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The transient self‐assembly of molecules under the direction of a consumable fuel source is fundamental to biological processes such as cellular organization and motility. Such biomolecular assemblies exist in an out‐of‐equilibrium state, requiring continuous consumption of high energy molecules. At the same time, the creation of bioinspired supramolecular hydrogels has traditionally focused on associations occurring at the thermodynamic equilibrium state. Here, hydrogels are prepared from cucurbit[7]uril host–guest supramolecular interactions through transient physical crosslinking driven by the consumption of a reactive chemical fuel. Upon action from this fuel, the affinity and dynamics of CB[7]–guest recognition are altered. In this way, the lifetime of transient hydrogel formation and the dynamic modulus obtained are governed by fuel consumption, rather than being directed by equilibrium complex formation. 
    more » « less
  2. Abstract Solid surfaces that are immobilized with DNA molecules underlie an array of biotechnological devices. These surfaces may also mediate the self‐assembly of hierarchical DNA nanostructures. However, a number of fundamental questions concerning the structure–function relationship of these biointerfaces remain, including how these DNA probe molecules organize on the surface and how the spatial organization influences molecular recognition kinetics and interfacial affinity of these DNA molecules at the regime where crowding interactions are important (1–10 nm). This mini‐review covers recent advances in understanding this structure–function relationship by spatially resolving surface hybridization events at the single‐molecule level. Counterintuitive cooperative effects in surface hybridization are discussed and as is how modeling these cooperative effects can be used to predict the hybridization kinetics of a prototypical DNA sensor. Future opportunities in using mechanistic understanding to improve the performance and reliability of DNA sensors and form hierarchical supramolecular structures are also discussed. 
    more » « less
  3. Abstract Cooperativity plays a critical role in self‐assembly and molecular recognition. A rigid aromatic oligoamide macrocycle with a cyclodirectional backbone binds with DABCO‐based cationic guests in a 2 : 1 ratio in high affinities (Ktotal≈1013 M−2) in the highly polar DMF. The host–guest binding also exhibits exceptionally strong positive cooperativity quantified by interaction factors α that are among the largest for synthetic host–guest systems. The unusually strong positive cooperativity, revealed by isothermal titration calorimetry (ITC) and fully corroborated by mass spectrometry, NMR and computational studies, is driven by guest‐induced stacking of the macrocycles and stabilization from the alkyl end chains of the guests, interactions that appear upon binding the second macrocycle. With its tight binding driven by extraordinary positive cooperativity, this host–guest system provides a tunable platform for studying molecular interactions and for constructing stable supramolecular assemblies. 
    more » « less
  4. Self-assembly of complex and functional materials remains a grand challenge in soft material science. Efficient assembly depends on a delicate balance between thermodynamic and kinetic effects, requiring fine-tuning affinities and concentrations of subunits. By contrast, we introduce an assembly paradigm that allows large error-tolerance in the subunit affinity and helps avoid kinetic traps. Our combined experimental and computational approach uses a model system of triangular subunits programmed to assemble intoT= 3 icosahedral capsids comprising 60 units. The experimental platform uses DNA origami to create monodisperse colloids whose three-dimensional geometry is controlled to nanometer precision, with two distinct bonds whose affinities are controlled tokBTprecision, quantified in situ by static light scattering. The computational model uses a coarse-grained representation of subunits, short-ranged potentials, and Langevin dynamics. Experimental observations and modeling reveal that when the bond affinities are unequal, two distincthierarchicalassembly pathways occur, in which the subunits first form dimers in one case and pentamers in another. These hierarchical pathways produce complete capsids faster and are more robust against affinity variation than egalitarian pathways, in which all binding sites have equal strengths. This finding suggests that hierarchical assembly may be a general engineering principle for optimizing self-assembly of complex target structures. 
    more » « less
  5. Abstract We report a feasible method to control self‐recognition during the self‐assembly of a hydrophilic macroion, phosphate‐functionalized γ‐cyclodextrin (γ‐CD‐P), though host‐guest interactions. We confirmed that γ‐CD‐P can form a host‐guest complex with a super‐chaotropic anion, namely the B12F122−borate cluster, by using NMR spectroscopy and isothermal titration calorimetry. The loaded γ‐CD‐P, which has a higher charge density, can be distinguished from the uncomplexed γ‐CD‐P, leading to self‐sorting behavior during the self‐assembly process, confirmed by the formation of two types of individual supramolecular structures (Rhof ca. 57 nm and 18 nm, determined by light scattering) instead of hybrid structures in mixed dilute solution. This self‐recognition behavior is accounted for by the difference in intermolecular electrostatic interactions arising from the loading. 
    more » « less