skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Super‐Resolution Lifetime Imaging of Single Molecules Near Gold Bowtie Nanoparticles
Abstract Interactions between light and matter serve as the basis of many technologies, but the quality of these devices is inherently limited by the optical properties of their constituents. Plasmonic nanoparticles are a highly versatile and tunable platform for the enhancement of such optical properties. However, the near‐field nature of these effects has made thorough study and understanding of these mechanisms difficult. In this work, we introduce a fully confocal technique combining photoswitching super‐resolution microscopy with fluorescence lifetime imaging microscopy to study single‐molecule decay rate enhancement. We demonstrate that the technique combines a spatial resolution better than 20 nm, and a 16 ps temporal resolution. Simultaneously, an autocorrelation measurement is also performed to confirm that the data indeed originates from single molecules. This work provides insight into the various mechanisms of plasmon‐enhanced emission, and allows the study of the correlation between emission intensity and lifetime enhancement. This complicated relationship is shown to be dependent upon the relative influence of various radiative and nonradiative decay pathways. Here, we provide a platform for further study of emission mislocalization, the position‐dependent prominence of different decay pathways, and the direct super‐resolved measurement of the local density of states.  more » « less
Award ID(s):
1945035
PAR ID:
10370118
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Optical Materials
Volume:
10
Issue:
21
ISSN:
2195-1071
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information—such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond—for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit. 
    more » « less
  2. Abstract 3D organoid models have recently seen a boom in popularity, as they can better recapitulate the complexity of multicellular organs compared to other in vitro culture systems. However, organoids are difficult to image because of the limited penetration depth of high‐resolution microscopes and depth‐dependent light attenuation, which can limit the understanding of signal transduction pathways and characterization of intimate cell‐extracellular matrix (ECM) interactions. To overcome these challenges, phototransfer by allyl sulfide exchange‐expansion microscopy (PhASE‐ExM) is developed, enabling optical clearance and super‐resolution imaging of organoids and their ECM in 3D. PhASE‐ExM uses hydrogels prepared via photoinitiated polymerization, which is advantageous as it decouples monomer diffusion into thick organoid cultures from the hydrogel fabrication. Apart from compatibility with organoids cultured in Matrigel, PhASE‐ExM enables 3.25× expansion and super‐resolution imaging of organoids cultured in synthetic poly(ethylene glycol) (PEG) hydrogels crosslinked via allyl‐sulfide groups (PEG‐AlS) through simultaneous photopolymerization and radical‐mediated chain‐transfer reactions that complete in <70 s. Further, PEG‐AlS hydrogels can be in situ softened to promote organoid crypt formation, providing a super‐resolution imaging platform both for pre‐ and post‐differentiated organoids. Overall, PhASE‐ExM is a useful tool to decipher organoid behavior by enabling sub‐micrometer scale, 3D visualization of proteins and signal transduction pathways. 
    more » « less
  3. Spectroscopic single-molecule localization microscopy (sSMLM) simultaneously provides spatial localization and spectral information of individual single-molecules emission, offering multicolor super-resolution imaging of multiple molecules in a single sample with the nanoscopic resolution. However, this technique is limited by the requirements of acquiring a large number of frames to reconstruct a super-resolution image. In addition, multicolor sSMLM imaging suffers from spectral cross-talk while using multiple dyes with relatively broad spectral bands that produce cross-color contamination. Here, we present a computational strategy to accelerate multicolor sSMLM imaging. Our method uses deep convolution neural networks to reconstruct high-density multicolor super-resolution images from low-density, contaminated multicolor images rendered using sSMLM datasets with much fewer frames, without compromising spatial resolution. High-quality, super-resolution images are reconstructed using up to 8-fold fewer frames than usually needed. Thus, our technique generates multicolor super-resolution images within a much shorter time, without any changes in the existing sSMLM hardware system. Two-color and three-color sSMLM experimental results demonstrate superior reconstructions of tubulin/mitochondria, peroxisome/mitochondria, and tubulin/mitochondria/peroxisome in fixed COS-7 and U2-OS cells with a significant reduction in acquisition time. 
    more » « less
  4. Dye-doped nanoparticles have been investigated as bright, fluorescent probes for localization-based super-resolution microscopy. Nanoparticle size is important in super-resolution microscopy to get an accurate size of the object of interest from image analysis. Due to their self-blinking behavior and metal-enhanced fluorescence (MEF), Ag@SiO2and Au@Ag@SiO2nanoparticles have shown promise as probes for localization-based super-resolution microscopy. Here, several noble metal-based dye-doped core-shell nanoparticles have been investigated as self-blinking nanomaterial probes. It was observed that both the gold- and silver-plated nanoparticle cores exhibit weak luminescence under certain conditions due to the surface plasmon resonance bands produced by each metal, and the gold cores exhibit blinking behavior which enhances the blinking and fluorescence of the dye-doped nanoparticle. However, the silver-plated nanoparticle cores, while weakly luminescent, did not exhibit any blinking; the dye-doped nanoparticle exhibited the same behavior as the core fluorescent, but did not blink. Because of the blinking behavior, stochastic optical reconstruction microscopy (STORM) super-resolution analysis was able to be performed with performed on the gold core nanoparticles. A preliminary study on the use of these nanoparticles for localization-based super-resolution showed that these nanoparticles are suitable for use in STORM super resolution. Resolution enhancement was two times better than the diffraction limited images, with core sizes reduced to 15 nm using the hybrid Au–Ag cores. 
    more » « less
  5. Abstract Due to their ability to strongly modify the local optical field through the excitation of surface plasmon polaritons (SPPs), plasmonic nanostructures are often used to reshape the emission direction and enhance the radiative decay rate of quantum emitters, such as semiconductor quantum dots (QDs). These features are essential for quantum information processing, nanoscale photonic circuitry, and optoelectronics. However, the modification and enhancement demonstrated thus far have typically led to drastic alterations of the local energy density of the emitters, and hence their intrinsic optical properties, leaving little room for active control. Here, dynamic tuning of the energy states of a single semiconductor QD is demonstrated by optically modifying its local dielectric environment with a nearby plasmonic structure, instead of directly coupling it to the QD. This technique leaves intact the intrinsic optical properties of the QD, while enabling a reversible all‐optical control mechanism that operates below the diffraction limit at low power levels. 
    more » « less