skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evidence for the evolution of native plant response to mycorrhizal fungi in post‐agricultural grasslands
Abstract Plant–microbe interactions play an important role in structuring plant communities. Arbuscular mycorrhizal fungi (AMF) are particularly important. Nonetheless, increasing anthropogenic disturbance will lead to novel plant–AMF interactions, altering longstanding co‐evolutionary trajectories between plants and their associated AMF. Although emerging work shows that plant–AMF response can evolve over relatively short time scales due to anthropogenic change, little work has evaluated how plant AMF responsespecificitymay evolve due to novel plant–mycorrhizal interactions. Here, we examine changes in plant–AMF interactions in novel grassland systems by comparing the mycorrhizal response of plant populations from unplowed native prairies with populations from post‐agricultural grasslands to inoculation with both native prairie AMF and non‐native novel AMF. Across four plant species, we find support for evolution of differential responses to mycorrhizal inocula types, that is, mycorrhizal response specificity, consistent with expectations of local adaptation, with plants from native populations responding most to native AMF and plants from post‐agricultural populations responding most to non‐native AMF. We also find evidence of evolution of mycorrhizal response in two of the four plant species, as overall responsiveness to AMF changed from native to post‐agricultural populations. Finally, across all four plant species, roots from native prairie populations had lower levels of mycorrhizal colonization than those of post‐agricultural populations. Our results report on one of the first multispecies assessment of local adaptation to AMF. The consistency of the responses in our experiment among four species provides evidence that anthropogenic disturbance may have unintended impacts on native plant species' association with AMF, causing evolutionary change in the benefit native plant species gain from native symbioses.  more » « less
Award ID(s):
2027458 1738041 1656006
PAR ID:
10370131
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Human land use disturbance is a major contributor to the loss of natural plant communities, and this is particularly true in areas used for agriculture, such as the Midwestern tallgrass prairies of the United States. Previous work has shown that arbuscular mycorrhizal fungi (AMF) additions can increase native plant survival and success in plant community restorations, but the dispersal of AMF in these systems is poorly understood. In this study, we examined the dispersal of AMF taxa inoculated into four tallgrass prairie restorations. At each site, we inoculated native plant species with greenhouse-cultured native AMF taxa or whole soil collected from a nearby unplowed prairie. We monitored AMF dispersal, AMF biomass, plant growth, and plant community composition, at different distances from inoculation. In two sites, we assessed the role of plant hosts in dispersal, by placing known AMF hosts in a “bridge” and “island” pattern on either side of the inoculation points. We found that AMF taxa differ in their dispersal ability, with some taxa spreading to 2-m in the first year and others remaining closer to the inoculation point. We also found evidence that AMF spread altered non-inoculated neighboring plant growth and community composition in certain sites. These results represent the most comprehensive attempt to date to evaluate AMF spread. 
    more » « less
  2. Societal Impact Statement Agriculture touches all aspects of society and global environmental health. Dwindling phosphorous reserves are a looming crisis for civilization, and soil erosion typically far outpaces pedogenesis. Improving plant–mycorrhizal symbioses can enhance sustainable agriculture because mycorrhizas typically improve host‐plant nutrition and stabilize soils. Selective breeding of plants that gain greater benefits from mycorrhizas can provide considerable economic and environmental benefits. Our assessments demonstrate switchgrass genetic improvement increased or maintained production of two populations, and low‐input breeding increased mycorrhizal responsiveness, compared to parent lines. Selecting for increased mycorrhizal reliance may be an effective strategy for more sustainable and economical agricultural production. SummaryPlant–mycorrhizal interactions are not typically assessed in crop breeding programs. Our experiment addresses this by determining host‐plant outcomes of newly developed synthetic (agronomic) populations compared with parent lines, following low‐input selective breeding. Assessing the potential of low‐input breeding to enhance crop mycorrhizal benefits is a critical step toward more sustainable agricultural production.We compared four synthetic populations ofPanicum virgatum, from a low‐input biofuel breeding program at Oklahoma State University, to corresponding parent lines. Plants were grown in a greenhouse in native prairie soils that were either steam‐pasteurized (nonmycorrhizal) or non‐steamed (mycorrhizal).We assessed shoot and root biomass, shoot P concentration and P content, mycorrhizal growth response (MGR), and mycorrhizal phosphorous response (MPR). Importantly, we provide novel evidence that low‐input selective breeding increased mycorrhizal reliance of switchgrass synthetics compared to parent lines, with implications for global agricultural systems.There are substantial opportunities for plant traits associated with increased MGR and MPR to be transferred to a wide array of crops. Our findings indicate low‐input selective breeding can improve MGR and MPR. We propose these traits serve as a useful proxy for host‐plant mycorrhizal reliance, facilitating successful hologenome breeding to reduce fertilizer requirements. 
    more » « less
  3. Abstract Some invasive plant species rapidly evolve greater size and/or competitive ability in their nonnative ranges. However, it is not well known whether these traits transfer back to the native range, or instead represent genotype‐by‐environment interactions where traits are context specific to communities in the new range where the evolution occurred. Insight into transferability vs. context specificity can be tested using experiments performed with individuals from populations from the native and nonnative ranges of exotic invasive species. Using a widespread invasive plant species in Europe,Solidago gigantea, we established reciprocal common garden experiments in the native range (Montana, North America;n = 4) and the nonnative range (Hungary, Europe;n = 4) to assess differences in size, vegetative shoot number, and herbivory between populations from the native and nonnative ranges. In a greenhouse experiment, we also tested whether the inherent competitive ability of genotypes from 15 native and 15 invasive populations differed when pitted against 11 common native North American competitors. In common gardens, plants from both ranges considered together produced five times more biomass, grew four times taller, and developed five times more rhizomes in the nonnative range garden compared to the native range garden. The interaction between plant origin and the common garden location was highly significant, with plants from Hungary performing better than plants from Montana when grown in Hungary, and plants from Montana performing better than plants from Hungary when grown in Montana. In the greenhouse, there were no differences in the competitive effects and responses ofS. giganteaplants from the two ranges when grown with North American natives. Our results suggest thatS. giganteamight have undergone rapid evolution for greater performance abroad, but if so, this response does not translate to greater performance at home. 
    more » « less
  4. Flowering plants do not occur alone and often grow in mixed-species communities where pollinator sharing is high and interactions via pollinators can occur at pre- and post-pollination stages. While the causes and consequences of pre-pollination interactions have been well studied little is known about post-pollination interactions via heterospecific pollen (HP) receipt, and even less about the evolutionary implications of these interactions. In particular, the degree to which plants can evolve tolerance mechanisms to the negative effects of HP receipt has received little attention. Here, we aim to fill this gap in our understanding of post-pollination interactions by experimentally testing whether two co-flowering Clarkia species can evolve HP tolerance, and whether tolerance to specific HP ‘genotypes’ (fine-scale local adaptation to HP) occurs. We find that Clarkia species vary in their tolerance to HP effects. Furthermore, conspecific pollen performance and the magnitude of HP effects were related to the recipient's history of exposure to HP in C. xantiana but not in C. speciosa. Specifically, better conspecific pollen performance and smaller HP effects were observed in populations of C. xantiana plants with previous exposure to HP compared to populations without such exposure. These results suggest that plants may have the potential to evolve tolerance mechanisms to HP effects but that these may occur not from the female (stigma, style) but from the male (pollen) perspective, a possibility that is often overlooked. We find no evidence for fine-scale local adaptation to HP receipt. Studies that evaluate the adaptive potential of plants to the negative effects of HP receipt are an important first step in understanding the evolutionary consequences of plant–plant post-pollination interactions. Such knowledge is in turn crucial for deciphering the role of plant–pollinator interactions in driving floral evolution and the composition of co-flowering communities. 
    more » « less
  5. Ecological restoration efforts can increase the diversity and function of degraded areas. However, current restoration practices cannot typically reestablish the full diversity and species composition of remnant plant communities. Restoration quality can be improved by reintroducing key organisms from the native plant microbiome. In particular, root symbionts called arbuscular mycorrhizal (AM) fungi are critical in shaping grassland communities, but are sensitive to anthropogenic disturbance, which may pose a problem for grassland restoration. Studies of mycorrhizal amendments include inoculation densities of 2–10,000 kg of inocula per hectare. These studies report variable results that may depend on inocula volume, composition, or nativeness. Here we test eight different densities of native AM fungal amendment, ranging from 0 to 8,192 kg/ha in a newly installed prairie restoration. We found that native plant establishment benefited from native mycorrhizal inocula, resulting in improvements in native plant abundance, richness, and community diversity. Moreover, the application of very low densities of native mycorrhizal inocula, as suggested on commercial mycorrhizal products, were ineffective, and higher concentrations were required to benefit native plant abundance and community diversity. These data suggest that higher densities of mycorrhizal amendment or perhaps alternative distribution methods may be required to maximize benefits of native mycorrhizal amendments in restoration practices. 
    more » « less