skip to main content


Title: Rapid differentiation of soil and root microbiomes in response to plant composition and biodiversity in the field
Abstract

Research suggests that microbiomes play a major role in structuring plant communities and influencing ecosystem processes, however, the relative roles and strength of change of microbial components have not been identified. We measured the response of fungal, arbuscular mycorrhizal fungal (AMF), bacteria, and oomycete composition 4 months after planting of field plots that varied in plant composition and diversity. Plots were planted using 18 prairie plant species from three plant families (Poaceae, Fabaceae, and Asteraceae) in monoculture, 2, 3, or 6 species richness mixtures and either species within multiple families or one family. Soil cores were collected and homogenized per plot and DNA were extracted from soil and roots of each plot. We found that all microbial groups responded to the planting design, indicating rapid microbiome response to plant composition. Fungal pathogen communities were strongly affected by plant diversity. We identified OTUs from genera of putatively pathogenic fungi that increased with plant family, indicating likely pathogen specificity. Bacteria were strongly differentiated by plant family in roots but not soil. Fungal pathogen diversity increased with planted species richness, while oomycete diversity, as well as bacterial diversity in roots, decreased. AMF differentiation in roots was detected with individual plant species, but not plant family or richness. Fungal saprotroph composition differentiated between plant family composition in plots, providing evidence for decomposer home-field advantage. The observed patterns are consistent with rapid microbiome differentiation with plant composition, which could generate rapid feedbacks on plant growth in the field, thereby potentially influencing plant community structure, and influence ecosystem processes. These findings highlight the importance of native microbial inoculation in restoration.

 
more » « less
Award ID(s):
2120153 1738041
NSF-PAR ID:
10407738
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
ISME Communications
Volume:
3
Issue:
1
ISSN:
2730-6151
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Litter decomposition facilitates the recycling of often limiting resources, which may promote plant productivity responses to diversity, that is, overyielding. However, the direct relationship between decomposition,k, and overyielding remains underexplored in grassland diversity manipulations.

    We test whether local adaptation of microbes, that is, home‐field advantage (HFA), N‐priming from plant inputs or precipitation drive decomposition and whether decomposition generates overyielding. Within a grassland diversity‐manipulation, altering plant richness (1, 2, 3 and 6 species), composition (communities composed of plants from a single‐family or multiple‐families) and precipitation (50% and 150% ambient growing season precipitation), we conducted a litter decomposition experiment. In spring 2020, we deployed four replicate switchgrass,Panicum virgatum, litter bags (1.59 mm mesh opening), collecting them over 7 months to estimate litterk.

    Precipitation was a strong, independent driver of decomposition. Switchgrass decomposition accelerated with grass richness and decelerated as phylogenetic dissimilarity from switchgrass increased, suggesting decomposition is fastest at ‘home’. However, decomposition slowed with switchgrass density. In plots that contained switchgrass, we observed no relationship between decomposition and fungal saprotroph dissimilarity from switchgrass. However, in plots without switchgrass, decomposition slowed with increasing saprotroph dissimilarity from switchgrass. Combined these findings suggest that HFA is strongest when closely related neighbours, that is, heterospecific neighbours, are present in the community, rather than other individuals of the same species, that is, conspecifics. Legumes accelerated decomposition with more litter N remaining in those plots, suggesting that N‐inputs from planted legumes are priming decomposition of litter C. However, decomposition and overyielding were unrelated in legume communities. While in grass communities, overyielding and decomposition were positively related and the relationship was strongest in plots with low densities of switchgrass, that is, with heterospecific neighbours.

    Combined these findings suggest that plant species richness and community composition stimulate litter decomposition through multiple mechanisms, including N‐priming, but only HFA from local adaptation of microbes on closely related species correlates with overyielding, likely through resource recycling. Our results link diversity with ecosystem processes facilitating above‐ground productivity. Whether diversity loss will affect litter decomposition, productivity or both is contingent on resident plant traits and whether a locally adapted soil microbiome is maintained.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  2. The mandate by the Energy Independence and Security Act of 2007 to increase renewable fuel production in the USA has resulted in extensive research into the sustainability of perennial bioenergy crops such as switchgrass (Panicum virgatum) and miscanthus (Miscanthus× giganteus). Perennial grassland crops have been shown to support greater aboveground biodiversity and ecosystem function than annual crops. However, management considerations, such as what crop to plant or whether to use fertilizer, may alter belowground diversity and ecosystem functioning associated with these grasslands as well. In this study, we compared crop type (switchgrass or miscanthus) and nitrogen fertilization effects on arbuscular mycorrhizal fungal (AMF) and soil nematode abundance, activity, and diversity in a long-term experiment. We quantified AMF root colonization, AMF extra-radical hyphal length, soil glomalin concentrations, AMF richness and diversity, plant-parasitic nematode abundance, and nematode family richness and diversity in each treatment. Mycorrhizal activity and diversity were higher with switchgrass than with miscanthus, leading to higher potential soil carbon contributions via increased hyphal growth and glomalin production. Plant-parasitic nematode (PPN) abundance was 2.3 ×  higher in miscanthus plots compared to switchgrass, mostly due to increases in dagger nematodes (Xiphinema). The higher PPN abundance in miscanthus may be a consequence of lower AMF in this species, as AMF can provide protection against PPN through a variety of mechanisms. Nitrogen fertilization had minor negative effects on AMF and nematode diversity associated with these crops. Overall, we found that crop type and fertilizer application associated with perennial bioenergy cropping systems can have detectable effects on the diversity and composition of soil communities, which may have important consequences for the ecosystem services provided by these systems. 
    more » « less
  3. The loss of plant productivity with declining diversity is well established, exceeding other global change drivers including drought. These patterns are most clearly established for aboveground productivity, it remains poorly understood whether productivity increases associated with diversity are replicated belowground. To address this gap, we established a plant diversity-manipulation experiment in 2018. It is a full factorial manipulation of plant species richness and community composition, and precipitation. Three and five years post-establishment, two bulk soil cores (20cm depth) were collected and composited from each plot and were processed for roots to determine belowground biomass as root standing crop. We observed a strong positive relationship between richness and aboveground production and belowground biomass, generating positive combined above and belowground with diversity. Root standing crop increased 1.4-fold from years three to five. Grass communities produced more root biomass (monoculture mean 463.9 ± 410.3g m−2), and the magnitude of the relationship between richness and root standing crop was greatest within those communities. Legume communities produced the fewest roots (monoculture mean 212.2 ± 155.1g m−2), and belowground standing crop was not affected by diversity. Root standing crops in year three were 1.8 times higher under low precipitation conditions, while in year five we observed comparable root standing crops between precipitation treatments. Plant family was a strong mediator of increased belowground biomass observed with diversity, with single family grass and aster families generating 1.7 times greater root standing crops in six compared to single species communities, relationships between diversity and aboveground production were consistently observed in both single-family and multiple family communities. Diverse communities with species from multiple families generated only 1.3 times the root standing crop compared to monoculture average root biomass. We surprisingly observe diverse single family communities can generate increases in root standing crops that exceed those generated by diverse multiple family communities, highlighting the importance of plant richness within plant family for a given community. These patterns have potential implications for understanding the interactions of multiple global change drivers as changes in both precipitation and plant community composition do alter whether plant production aboveground is translated belowground biomass.

     
    more » « less
  4. The soil-borne pathogen Phytophthora cinnamomi causes a deadly plant disease. Phosphite is widely used as an effective treatment to protect plants from Phytophthora cinnamomi. Phosphite as a common fungicide might influence the composition of soil fungal communities. However, whether the belowground mechanisms of phosphite-mediated protections are direct or indirectly mediated through soil biota are unknown. Therefore, exploring belowground mechanisms could contribute to the evaluation of the sustainability of phosphite use and tests hypotheses about direct versus indirect mechanisms in pathogen response. Our greenhouse pot experiment on Rhododendron species had either an after-pathogen or a before-pathogen use of phosphite to compare and evaluate plant and soil fungal responses to phosphite and the presence of an oomycete pathogen phytophthora cinnamomi. The factorial experiment also included with and without pathogen and soil biota treatments, for a test of interactive effects. High throughput sequencing analyzed the soil fungal communities, and we measured the diversity, evenness and richness of soil fungi. Phosphite effectively increased survival of Rhododendron species. It altered the composition of soil fungal communities, and the timing of using phosphite determined the way in which the fungal communities changed. Trichoderma taxa also responded to soil phosphite and Phytophthora cinnamomi. The benefits of antagonistic fungi such as Trichoderma are context-dependent, suggesting protection against pathogens depends on the timing of phosphite application. This study provides the first evidence that phosphite-mediated pathogen protection includes both direct benefits to plants and indirect effects mediated through the soil microbial community. 
    more » « less
  5. Abstract

    Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.

     
    more » « less