skip to main content


Title: Prostate Cancer Risk Stratification via Nondestructive 3D Pathology with Deep Learning–Assisted Gland Analysis
Abstract <p>Prostate cancer treatment planning is largely dependent upon examination of core-needle biopsies. The microscopic architecture of the prostate glands forms the basis for prognostic grading by pathologists. Interpretation of these convoluted three-dimensional (3D) glandular structures via visual inspection of a limited number of two-dimensional (2D) histology sections is often unreliable, which contributes to the under- and overtreatment of patients. To improve risk assessment and treatment decisions, we have developed a workflow for nondestructive 3D pathology and computational analysis of whole prostate biopsies labeled with a rapid and inexpensive fluorescent analogue of standard hematoxylin and eosin (H&E) staining. This analysis is based on interpretable glandular features and is facilitated by the development of image translation–assisted segmentation in 3D (ITAS3D). ITAS3D is a generalizable deep learning–based strategy that enables tissue microstructures to be volumetrically segmented in an annotation-free and objective (biomarker-based) manner without requiring immunolabeling. As a preliminary demonstration of the translational value of a computational 3D versus a computational 2D pathology approach, we imaged 300 ex vivo biopsies extracted from 50 archived radical prostatectomy specimens, of which, 118 biopsies contained cancer. The 3D glandular features in cancer biopsies were superior to corresponding 2D features for risk stratification of patients with low- to intermediate-risk prostate cancer based on their clinical biochemical recurrence outcomes. The results of this study support the use of computational 3D pathology for guiding the clinical management of prostate cancer.</p></sec> <sec><title>Significance:

An end-to-end pipeline for deep learning–assisted computational 3D histology analysis of whole prostate biopsies shows that nondestructive 3D pathology has the potential to enable superior prognostic stratification of patients with prostate cancer.

 
more » « less
Award ID(s):
1934292
NSF-PAR ID:
10370177
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.1158
Date Published:
Journal Name:
Cancer Research
Volume:
82
Issue:
2
ISSN:
0008-5472
Page Range / eLocation ID:
p. 334-345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Prostate cancer treatment decisions rely heavily on subjective visual interpretation [assigning Gleason patterns or International Society of Urological Pathology (ISUP) grade groups] of limited numbers of two‐dimensional (2D) histology sections. Under this paradigm, interobserver variance is high, with ISUP grades not correlating well with outcome for individual patients, and this contributes to the over‐ and undertreatment of patients. Recent studies have demonstrated improved prognostication of prostate cancer outcomes based on computational analyses of glands and nuclei within 2D whole slide images. Our group has also shown that the computational analysis of three‐dimensional (3D) glandular features, extracted from 3D pathology datasets of whole intact biopsies, can allow for improved recurrence prediction compared to corresponding 2D features. Here we seek to expand on these prior studies by exploring the prognostic value of 3D shape‐based nuclear features in prostate cancer (e.g. nuclear size, sphericity). 3D pathology datasets were generated using open‐top light‐sheet (OTLS) microscopy of 102 cancer‐containing biopsies extractedex vivofrom the prostatectomy specimens of 46 patients. A deep learning‐based workflow was developed for 3D nuclear segmentation within the glandular epithelium versus stromal regions of the biopsies. 3D shape‐based nuclear features were extracted, and a nested cross‐validation scheme was used to train a supervised machine classifier based on 5‐year biochemical recurrence (BCR) outcomes. Nuclear features of the glandular epithelium were found to be more prognostic than stromal cell nuclear features (area under the ROC curve [AUC] = 0.72 versus 0.63). 3D shape‐based nuclear features of the glandular epithelium were also more strongly associated with the risk of BCR than analogous 2D features (AUC = 0.72 versus 0.62). The results of this preliminary investigation suggest that 3D shape‐based nuclear features are associated with prostate cancer aggressiveness and could be of value for the development of decision‐support tools. © 2023 The Pathological Society of Great Britain and Ireland.

     
    more » « less
  2. Abstract <p>Active surveillance (AS) is a suitable management option for newly diagnosed prostate cancer, which usually presents low to intermediate clinical risk. Patients enrolled in AS have their tumor monitored via longitudinal multiparametric MRI (mpMRI), PSA tests, and biopsies. Hence, treatment is prescribed when these tests identify progression to higher-risk prostate cancer. However, current AS protocols rely on detecting tumor progression through direct observation according to population-based monitoring strategies. This approach limits the design of patient-specific AS plans and may delay the detection of tumor progression. Here, we present a pilot study to address these issues by leveraging personalized computational predictions of prostate cancer growth. Our forecasts are obtained with a spatiotemporal biomechanistic model informed by patient-specific longitudinal mpMRI data (T2-weighted MRI and apparent diffusion coefficient maps from diffusion-weighted MRI). Our results show that our technology can represent and forecast the global tumor burden for individual patients, achieving concordance correlation coefficients from 0.93 to 0.99 across our cohort (n = 7). In addition, we identify a model-based biomarker of higher-risk prostate cancer: the mean proliferation activity of the tumor (P = 0.041). Using logistic regression, we construct a prostate cancer risk classifier based on this biomarker that achieves an area under the ROC curve of 0.83. We further show that coupling our tumor forecasts with this prostate cancer risk classifier enables the early identification of prostate cancer progression to higher-risk disease by more than 1 year. Thus, we posit that our predictive technology constitutes a promising clinical decision-making tool to design personalized AS plans for patients with prostate cancer.</p></sec> <sec><title>Significance:

    Personalization of a biomechanistic model of prostate cancer with mpMRI data enables the prediction of tumor progression, thereby showing promise to guide clinical decision-making during AS for each individual patient.

     
    more » « less
  3. Abstract

    In recent years, technological advances in tissue preparation, high‐throughput volumetric microscopy, and computational infrastructure have enabled rapid developments in nondestructive 3D pathology, in which high‐resolution histologic datasets are obtained from thick tissue specimens, such as whole biopsies, without the need for physical sectioning onto glass slides. While 3D pathology generates massive datasets that are attractive for automated computational analysis, there is also a desire to use 3D pathology to improve the visual assessment of tissue histology. In this perspective, we discuss and provide examples of potential advantages of 3D pathology for the visual assessment of clinical specimens and the challenges of dealing with large 3D datasets (of individual or multiple specimens) that pathologists have not been trained to interpret. We discuss the need for artificial intelligence triaging algorithms and explainable analysis methods to assist pathologists or other domain experts in the interpretation of these novel, often complex, large datasets.

     
    more » « less
  4. Abstract Non-small-cell lung cancer (NSCLC) represents approximately 80–85% of lung cancer diagnoses and is the leading cause of cancer-related death worldwide. Recent studies indicate that image-based radiomics features from positron emission tomography/computed tomography (PET/CT) images have predictive power for NSCLC outcomes. To this end, easily calculated functional features such as the maximum and the mean of standard uptake value (SUV) and total lesion glycolysis (TLG) are most commonly used for NSCLC prognostication, but their prognostic value remains controversial. Meanwhile, convolutional neural networks (CNN) are rapidly emerging as a new method for cancer image analysis, with significantly enhanced predictive power compared to hand-crafted radiomics features. Here we show that CNNs trained to perform the tumor segmentation task, with no other information than physician contours, identify a rich set of survival-related image features with remarkable prognostic value. In a retrospective study on pre-treatment PET-CT images of 96 NSCLC patients before stereotactic-body radiotherapy (SBRT), we found that the CNN segmentation algorithm (U-Net) trained for tumor segmentation in PET and CT images, contained features having strong correlation with 2- and 5-year overall and disease-specific survivals. The U-Net algorithm has not seen any other clinical information (e.g. survival, age, smoking history, etc.) than the images and the corresponding tumor contours provided by physicians. In addition, we observed the same trend by validating the U-Net features against an extramural data set provided by Stanford Cancer Institute. Furthermore, through visualization of the U-Net, we also found convincing evidence that the regions of metastasis and recurrence appear to match with the regions where the U-Net features identified patterns that predicted higher likelihoods of death. We anticipate our findings will be a starting point for more sophisticated non-intrusive patient specific cancer prognosis determination. For example, the deep learned PET/CT features can not only predict survival but also visualize high-risk regions within or adjacent to the primary tumor and hence potentially impact therapeutic outcomes by optimal selection of therapeutic strategy or first-line therapy adjustment. 
    more » « less
  5. Abstract Background

    This study presents user evaluation studies to assess the effect of information rendered by an interventional planning software on the operator's ability to plan transrectal magnetic resonance (MR)‐guided prostate biopsies using actuated robotic manipulators.

    Methods

    An intervention planning software was developed based on the clinical workflow followed for MR‐guided transrectal prostate biopsies. The software was designed to interface with a generic virtual manipulator and simulate an intervention environment using 2D and 3D scenes. User studies were conducted with urologists using the developed software to plan virtual biopsies.

    Results

    User studies demonstrated that urologists with prior experience in using 3D software completed the planning less time. 3D scenes were required to control all degrees‐of‐freedom of the manipulator, while 2D scenes were sufficient for planar motion of the manipulator.

    Conclusions

    The study provides insights on using 2D versus 3D environment from a urologist's perspective for different operational modes of MR‐guided prostate biopsy systems.

     
    more » « less