skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radiomics on spatial‐temporal manifolds via Fokker–Planck dynamics
Abstract BackgroundDelta radiomics is a high‐throughput computational technique used to describe quantitative changes in serial, time‐series imaging by considering the relative change in radiomic features of images extracted at two distinct time points. Recent work has demonstrated a lack of prognostic signal of radiomic features extracted using this technique. We hypothesize that this lack of signal is due to the fundamental assumptions made when extracting features via delta radiomics, and that other methods should be investigated. PurposeThe purpose of this work was to show a proof‐of‐concept of a new radiomics paradigm for sparse, time‐series imaging data, where features are extracted from a spatial‐temporal manifold modeling the time evolution between images, and to assess the prognostic value on patients with oropharyngeal cancer (OPC). MethodsTo accomplish this, we developed an algorithm to mathematically describe the relationship between two images acquired at time and . These images serve as boundary conditions of a partial differential equation describing the transition from one image to the other. To solve this equation, we propagate the position and momentum of each voxel according to Fokker–Planck dynamics (i.e., a technique common in statistical mechanics). This transformation is driven by an underlying potential force uniquely determined by the equilibrium image. The solution generates a spatial‐temporal manifold (3 spatial dimensions + time) from which we define dynamic radiomic features. First, our approach was numerically verified by stochastically sampling dynamic Gaussian processes of monotonically decreasing noise. The transformation from high to low noise was compared between our Fokker–Planck estimation and simulated ground‐truth. To demonstrate feasibility and clinical impact, we applied our approach to18F‐FDG‐PET images to estimate early metabolic response of patients (n = 57) undergoing definitive (chemo)radiation for OPC. Images were acquired pre‐treatment and 2‐weeks intra‐treatment (after 20 Gy). Dynamic radiomic features capturing changes in texture and morphology were then extracted. Patients were partitioned into two groups based on similar dynamic radiomic feature expression via k‐means clustering and compared by Kaplan–Meier analyses with log‐rank tests (p < 0.05). These results were compared to conventional delta radiomics to test the added value of our approach. ResultsNumerical results confirmed our technique can recover image noise characteristics given sparse input data as boundary conditions. Our technique was able to model tumor shrinkage and metabolic response. While no delta radiomics features proved prognostic, Kaplan–Meier analyses identified nine significant dynamic radiomic features. The most significant feature was Gray‐Level‐Size‐Zone‐Matrix gray‐level variance (p = 0.011), which demonstrated prognostic improvement over its corresponding delta radiomic feature (p = 0.722). ConclusionsWe developed, verified, and demonstrated the prognostic value of a novel, physics‐based radiomics approach over conventional delta radiomics via data assimilation of quantitative imaging and differential equations.  more » « less
Award ID(s):
2106988
PAR ID:
10530679
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association of Physicists in Medicine
Date Published:
Journal Name:
Medical Physics
Volume:
51
Issue:
5
ISSN:
0094-2405
Page Range / eLocation ID:
3334 to 3347
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundOropharyngeal cancer (OPC) exhibits varying responses to chemoradiation therapy, making treatment outcome prediction challenging. Traditional imaging‐based methods often fail to capture the spatial heterogeneity within tumors, which influences treatment resistance and disease progression. Advances in modeling techniques allow for more nuanced analysis of this heterogeneity, identifying distinct tumor regions, or habitats, that drive patient outcomes. PurposeTo interrogate the association between treatment‐induced changes in spatial heterogeneity and chemoradiation resistance of oropharyngeal cancer (OPC) based on a novel tumor habitat analysis. MethodsA mathematical model was used to estimate tumor time dynamics of patients with OPC based on the applied analysis of partial differential equations. The position and momentum of each voxel was propagated according to Fokker‐Planck dynamics, that is, a common model in statistical mechanics. The boundary conditions of the Fokker‐Planck equation were solved based on pre‐ and intra‐treatment (i.e., after 2 weeks of therapy)18F‐FDG‐PET SUV images of patients (n = 56) undergoing definitive (chemo)radiation for OPC as part of a previously conducted prospective clinical trial. Tumor‐specific time dynamics, measured based on the solution of the Fokker‐Planck equation, were generated for each patient. Tumor habitats (i.e., non‐overlapping subregions of the primary tumor) were identified by measuring vector similarity in voxel‐level time dynamics through a fuzzy c‐means clustering algorithm. The robustness of our habitat construction method was quantified using a mean silhouette metric to measure intra‐habitat variability. Fifty‐four habitat‐specific radiomic texture features were extracted from pre‐treatment SUV images and normalized by habitat volume. Univariate Kaplan‐Meier analyses were implemented as a feature selection method, where statistically significant features (p < 0.05, log‐rank) were used to construct a multivariate Cox proportional‐hazards model. Parameters from the resulting Cox model were then used to construct a risk score for each patient, based on habitat‐specific radiomic expression. The patient cohort was stratified by median risk score value and association with recurrence‐free survival (RFS) was evaluated via log‐rank tests. ResultsDynamic tumor habitat analysis partitioned the gross disease of each patient into three spatial subregions. Voxels within each habitat suggested differential response rates in different compartments of the tumor. The minimum mean silhouette value was 0.57 and maximum mean silhouette value was 0.8, where values above 0.7 indicated strong intra‐habitat consistency and values between 0.5 and 0.7 indicated reasonable intra‐habitat consistency. Nine radiomic texture features (three GLRLM, two GLCOM, and three GLSZM) and SUVmax were found to be prognostically significant and were used to build the multivariate Cox model. The resulting risk score was associated with RFS (p = 0.032). By contrast, potential confounding factors (primary tumor volume and mean SUV) were not significantly associated with RFS (p = 0.286 andp = 0.231, respectively). ConclusionWe interrogated spatial heterogeneity of oropharyngeal tumors through the application of a novel algorithm to identify spatial habitats on SUV images. Our habitat construction technique was shown to be robust and habitat‐specific feature spaces revealed distinct underlying radiomic expression patterns. Radiomic features were extracted from dynamic habitats and used to build a risk score which demonstrated prognostic value. 
    more » « less
  2. BackgroundMetastatic cancer remains one of the leading causes of cancer-related mortality worldwide. Yet, the prediction of survivability in this population remains limited by heterogeneous clinical presentations and high-dimensional molecular features. Advances in machine learning (ML) provide an opportunity to integrate diverse patient- and tumor-level factors into explainable predictive ML models. Leveraging large real-world datasets and modern ML techniques can enable improved risk stratification and precision oncology. ObjectiveThis study aimed to develop and interpret ML models for predicting overall survival in patients with metastatic cancer using the Memorial Sloan Kettering-Metastatic (MSK-MET) dataset and to identify key prognostic biomarkers through explainable artificial intelligence techniques. MethodsWe performed a retrospective analysis of the MSK-MET cohort, comprising 25,775 patients across 27 tumor types. After data cleaning and balancing, 20,338 patients were included. Overall survival was defined as deceased versus living at last follow-up. Five classifiers (extreme gradient boosting [XGBoost], logistic regression, random forest, decision tree, and naive Bayes) were trained using an 80/20 stratified split and optimized via grid search with 5-fold cross-validation. Model performance was assessed using accuracy, area under the curve (AUC), precision, recall, and F1-score. Model explainability was achieved using Shapley additive explanations (SHAP). Survival analyses included Kaplan-Meier estimates, Cox proportional hazards models, and an XGBoost-Cox model for time-to-event prediction. The positive predictive value and negative predictive value were calculated at the Youden index–optimal threshold. ResultsXGBoost achieved the highest performance (accuracy=0.74; AUC=0.82), outperforming other classifiers. In survival analyses, the XGBoost-Cox model with a concordance index (C-index) of 0.70 exceeded the traditional Cox model (C-index=0.66). SHAP analysis and Cox models consistently identified metastatic site count, tumor mutational burden, fraction of genome altered, and the presence of distant liver and bone metastases as among the strongest prognostic factors, a pattern that held at both the pan-cancer level and recurrently across cancer-specific models. At the cancer-specific level, performance varied; prostate cancer achieved the highest predictive accuracy (AUC=0.88), while pancreatic cancer was notably more challenging (AUC=0.68). Kaplan-Meier analyses demonstrated marked survival separation between patients with and without metastases (80-month survival: approximately 0.80 vs 0.30). At the Youden-optimal threshold, positive predictive value and negative predictive value were approximately 70% and 80%, respectively, supporting clinical use for risk stratification. ConclusionsExplainable ML models, particularly XGBoost combined with SHAP, can strongly predict survivability in metastatic cancers while highlighting clinically meaningful features. These findings support the use of ML-based tools for patient counseling, treatment planning, and integration into precision oncology workflows. Future work should include external validation on independent cohorts, integration with electronic health records via Fast Healthcare Interoperability Resources–based dashboards, and prospective clinician-in-the-loop evaluation to assess real-world use. 
    more » « less
  3. Background: At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. Objective: This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. Methods: A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. Results: Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. Conclusions: This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance. 
    more » « less
  4. null (Ed.)
    Processing and modeling medical images have traditionally represented complex tasks requiring multidisciplinary collaboration. The advent of radiomics has assigned a central role to quantitative data analytics targeting medical image features algorithmically extracted from large volumes of images. Apart from the ultimate goal of supporting diagnostic, prognostic, and therapeutic decisions, radiomics is computationally attractive due to specific strengths: scalability, efficiency, and precision. Optimization is achieved by highly sophisticated statistical and machine learning algorithms, but it is especially deep learning that stands out as the leading inference approach. Various types of hybrid learning can be considered when building complex integrative approaches aimed to deliver gains in accuracy for both classification and prediction tasks. This perspective reviews some selected learning methods by focusing on both their significance for radiomics and their unveiled potential. 
    more » « less
  5. Treating disease according to precision health requires the individualization of therapeutic solutions as a cardinal step that is part of a process that typically depends on multiple factors. The starting point is the collection and assembly of data over time to assess the patient’s health status and monitor response to therapy. Radiomics is a very important component of this process. Its main goal is implementing a protocol to quantify the image informative contents by first mining and then extracting the most representative features. Further analysis aims to detect potential disease phenotypes through signs and marks of heterogeneity. As multimodal images hinge on various data sources, and these can be integrated with treatment plans and follow-up information, radiomics is naturally centered on dynamically monitoring disease progression and/or the health trajectory of patients. However, radiomics creates critical needs too. A concise list includes: (a) successful harmonization of intra/inter-modality radiomic measurements to facilitate the association with other data domains (genetic, clinical, lifestyle aspects, etc.); (b) ability of data science to revise model strategies and analytics tools to tackle multiple data types and structures (electronic medical records, personal histories, hospitalization data, genomic from various specimens, imaging, etc.) and to offer data-agnostic solutions for patient outcomes prediction; (c) and model validation with independent datasets to ensure generalization of results, clinical value of new risk stratifications, and support to clinical decisions for highly individualized patient management. 
    more » « less