skip to main content

Title: Dasymetric population mapping based on US census data and 30-m gridded estimates of impervious surface

Assessment of socio-environmental problems and the search for solutions often require intersecting geospatial data on environmental factors and human population densities. In the United States, Census data is the most common source for information on population. However, timely acquisition of such data at sufficient spatial resolution can be problematic, especially in cases where the analysis area spans urban-rural gradients. With this data release, we provide a 30-m resolution population estimate for the contiguous United States. The workflow dasymetrically distributes Census block level population estimates across all non-transportation impervious surfaces within each Census block. The methodology is updatable using the most recent Census data and remote sensing-based observations of impervious surface area. The dataset, known as the U.G.L.I (updatable gridded lightweight impervious) population dataset, compares favorably against other population data sources, and provides a useful balance between resolution and complexity.

more » « less
Award ID(s):
1724433 2054939
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The City of Atlanta, Georgia, is a fast-growing urban area with substantial economic and racial inequalities, subject to the impacts of climate change and intensifying heat extremes. Here, we analyze the magnitude, distribution, and predictors of heat exposure across the City of Atlanta, within the boundaries of Fulton County. Additionally, we evaluate the extent to which identified heat exposure is addressed in Atlanta climate resilience governance. First, land surface temperature (LST) was mapped to identify the spatial patterns of heat exposure, and potential socioeconomic and biophysical predictors of heat exposure were assessed. Second, government and city planning documents and policies were analyzed to assess whether the identified heat exposure and risks are addressed in Atlanta climate resilience planning. The average LST of Atlanta’s 305 block groups ranges from 23.7 °C (low heat exposure) in vegetated areas to 31.5 °C (high heat exposure) in developed areas across 13 summer days used to evaluate the spatial patterns of heat exposure (June–August, 2013–2019). In contrast to nationwide patterns, census block groups with larger historically marginalized populations (predominantly Black, less education, lower income) outside of Atlanta’s urban core display weaker relationships with LST (slopes ≈ 0) and are among the cooler regions of the city. Climate governance analysis revealed that although there are few strategies for heat resilience in Atlanta (n= 12), the majority are focused on the city’s warmest region, the urban core, characterized by the city’s largest extent of impervious surface. These strategies prioritize protecting and expanding the city’s urban tree canopy, which has kept most of Atlanta’s marginalized communities under lower levels of outdoor heat exposure. Such a tree canopy can serve as an example of heat resilience for many cities across the United States and the globe.

    more » « less
  2. Abstract

    Understanding dynamic human mobility changes and spatial interaction patterns at different geographic scales is crucial for assessing the impacts of non-pharmaceutical interventions (such as stay-at-home orders) during the COVID-19 pandemic. In this data descriptor, we introduce a regularly-updated multiscale dynamic human mobility flow dataset across the United States, with data starting from March 1st, 2020. By analysing millions of anonymous mobile phone users’ visits to various places provided by SafeGraph, the daily and weekly dynamic origin-to-destination (O-D) population flows are computed, aggregated, and inferred at three geographic scales: census tract, county, and state. There is high correlation between our mobility flow dataset and openly available data sources, which shows the reliability of the produced data. Such a high spatiotemporal resolution human mobility flow dataset at different geographic scales over time may help monitor epidemic spreading dynamics, inform public health policy, and deepen our understanding of human behaviour changes under the unprecedented public health crisis. This up-to-date O-D flow open data can support many other social sensing and transportation applications.

    more » « less
  3. Abstract

    Tile drainage is one of the dominant agricultural management practices in the United States and has greatly expanded since the late 1990s. It has proven effects on land surface water balance and quantity and quality of streamflow at the local scale. The effect of tile drainage on crop production, hydrology, and the environment on a regional scale is elusive due to lack of high-resolution, spatially-explicit tile drainage area information for the Contiguous United States (CONUS). We developed a 30-m resolution tile drainage map of the most-likely tile-drained area of the CONUS (AgTile-US) from county-level tile drainage census using a geospatial model that uses soil drainage information and topographic slope as inputs. Validation of AgTile-US with 16000 ground truth points indicated 86.03% accuracy at the CONUS-scale. Over the heavily tile-drained midwestern regions of the U.S., the accuracy ranges from 82.7% to 93.6%. These data can be used to study and model the hydrologic and water quality responses of tile drainage and to enhance streamflow forecasting in tile drainage dominant regions.

    more » « less
  4. Abstract

    Datasets that monitor biodiversity capture information differently depending on their design, which influences observer behavior and can lead to biases across observations and species. Combining different datasets can improve our ability to identify and understand threats to biodiversity, but this requires an understanding of the observation bias in each. Two datasets widely used to monitor bird populations exemplify these general concerns: eBird is a citizen science project with high spatiotemporal resolution but variation in distribution, effort, and observers, whereas the Breeding Bird Survey (BBS) is a structured survey of specific locations over time. Analyses using these two datasets can identify contradictory population trends. To understand these discrepancies and facilitate data fusion, we quantify species‐level reporting differences across eBird and the BBS in three regions across the United States by jointly modeling bird abundances using data from both datasets. First, we fit a joint Species Distribution Model that accounts for environmental conditions and effort to identify reporting differences across the datasets. We then examine how these differences in reporting are related to species traits. Finally, we analyze species reported to one dataset but not the other and determine whether traits differ between reported and unreported species. We find that most species are reported more in the BBS than eBird. Specifically, we find that compared to eBird, BBS observers tend to report higher counts of common species and species that are usually detected by sound. We also find that species associated with water are reported less in the BBS. Species typically identified by sound are reported more at sunrise than later in the morning. Our results quantify reporting differences in eBird and the BBS to enhance our understanding of how each captures information and how they should be used. The reporting rates we identify can also be incorporated into observation models through detectability or effort to improve analyses across species and datasets. The method demonstrated here can be used to compare reporting rates across any two or more datasets to examine biases.

    more » « less
  5. Abstract Hurricanes are one of the most catastrophic natural hazards faced by residents of the United States. Improving the public’s hurricane preparedness is essential to reduce the impact and disruption of hurricanes on households. Inherent in traditional methods for quantifying and monitoring hurricane preparedness are significant lags, which hinder effective monitoring of residents’ preparedness in advance of an impending hurricane. This study establishes a methodological framework to quantify the extent, timing, and spatial variation of hurricane preparedness at the census block group level using high-resolution location intelligence data. Anonymized cell phone data on visits to points-of-interest for each census block group in Harris County before 2017 Hurricane Harvey were used to examine residents’ hurricane preparedness. Four categories of points-of-interest, grocery stores, gas stations, pharmacies and home improvement stores, were identified as they have close relationship with hurricane preparedness, and the daily number of visits from each CBG to these four categories of POIs were calculated during preparation period. Two metrics, extent of preparedness and proactivity, were calculated based on the daily visit percentage change compared to the baseline period. The results show that peak visits to pharmacies often occurred in the early stage of preparation, whereas the peak of visits to gas stations happened closer to hurricane landfall. The spatial and temporal patterns of visits to grocery stores and home improvement stores were quite similar. However, correlation analysis demonstrates that extent of preparedness and proactivity are independent of each other. Combined with synchronous evacuation data, CBGs in Harris County were divided into four clusters in terms of extent of preparedness and evacuation rate. The clusters with low preparedness and low evacuation rate were identified as hotspots of vulnerability for shelter-in-place households that would need urgent attention during response. Hence, the research findings provide a new data-driven approach to quantify and monitor the extent, timing, and spatial variations of hurricane preparedness. Accordingly, the study advances data-driven understanding of human protective actions during disasters. The study outcomes also provide emergency response managers and public officials with novel data-driven insights to more proactively monitor residents’ disaster preparedness, making it possible to identify under-prepared areas and better allocate resources in a timely manner. 
    more » « less