Subsurface tile drainage (TD) is a dominant agriculture water management practice in the United States (US) to enhance crop production in poorly drained soils. Assessments of field‐level or watershed‐level (<50 km2) hydrologic impacts of TD are becoming common; however, a major gap exists in our understanding of regional (>105 km2) impacts of TD on hydrology. The National Water Model (NWM) is a distributed 1‐km resolution hydrological model designed to provide accurate streamflow forecasts at 2.7 million reaches across the US. The current NWM lacks TD representation which adds considerable uncertainty to streamflow forecasts in heavily tile‐drained areas. In this study, we quantify the performance of the NWM with a newly incorporated tile‐drainage scheme over the heavily tile‐drained Midwestern US. Employing a TD scheme enhanced the uncalibrated NWM performance by about 20–50% of the fully calibrated NWM (
Tile drainage is one of the dominant agricultural management practices in the United States and has greatly expanded since the late 1990s. It has proven effects on land surface water balance and quantity and quality of streamflow at the local scale. The effect of tile drainage on crop production, hydrology, and the environment on a regional scale is elusive due to lack of high-resolution, spatially-explicit tile drainage area information for the Contiguous United States (CONUS). We developed a 30-m resolution tile drainage map of the most-likely tile-drained area of the CONUS (AgTile-US) from county-level tile drainage census using a geospatial model that uses soil drainage information and topographic slope as inputs. Validation of AgTile-US with 16000 ground truth points indicated 86.03% accuracy at the CONUS-scale. Over the heavily tile-drained midwestern regions of the U.S., the accuracy ranges from 82.7% to 93.6%. These data can be used to study and model the hydrologic and water quality responses of tile drainage and to enhance streamflow forecasting in tile drainage dominant regions.
more » « less- Award ID(s):
- 1739705
- PAR ID:
- 10181145
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Scientific Data
- Volume:
- 7
- Issue:
- 1
- ISSN:
- 2052-4463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Calib ). The calibrated NWM with tile drainage (CalibTD ) showed enhanced accuracy with higher event hit rates and lower false alarm rates thanCalib .CalibTD showed better performance in high‐flow estimations as TD increased streamflow peaks (14%), volume (2.3%), and baseflow (11%). Regional water balance analysis indicated that TD significantly reduced surface runoff (−7% to −29%), groundwater recharge (−43% to −50%), evapotranspiration (−7% to −13%), and soil moisture content (−2% to −3%). However, TD significantly increased soil profile lateral flow (27.7%) along with infiltration and soil water storage potential. Overall, our findings highlight the importance of incorporating the TD process into the operational configuration of the NWM. -
Abstract Streamflow droughts are receiving increased attention worldwide due to their impact on the environment and economy. One region of concern is the Midwestern United States, whose agricultural productivity depends on subsurface pipes known as tile drains to improve trafficability and soil conditions for crop growth. Tile drains accomplish this by rapidly transporting surplus soil moisture and shallow groundwater from fields, resulting in reduced watershed storage. However, no work has previously examined the connection between tile drainage and streamflow drought. Here, we pose the question: does the extent of watershed-level tile drainage lead to an increased susceptibly and magnitude of streamflow droughts? To answer this, we use daily streamflow data for 122 watersheds throughout the Midwestern United States to quantify streamflow drought duration, frequency, and intensity. Using spatial multiple regression models, we find that agricultural tile drainage generates statistically significant (
p < 0.05) increases in streamflow drought duration and intensity while significantly reducing drought frequency. The magnitude of the effect of tile drainage on streamflow drought characteristics is similar to that of water table depth and precipitation seasonality, both of which are known to influence streamflow droughts. Furthermore, projected changes in regional precipitation characteristics will likely drive the installation of additional tile drainage. We find that for each 10% increase in tile-drained watershed area, streamflow drought duration and intensity increase by 0.03 d and 12%, respectively, while frequency decreases by 0.10 events/year. Such increases in tile drainage may lead to more severe streamflow droughts and have a detrimental effect on the socio-environmental usage of streams throughout the Midwest. -
It is essential to identify the dominant flow paths, hot spots and hot periods of hydrological nitrate-nitrogen (NO3-N) losses for developing nitrogen loads reduction strategies in agricultural watersheds. Coupled biogeochemical transformations and hydrological connectivity regulate the spatiotemporal dynamics of water and NO3-N export along surface and subsurface flows. However, modeling performance is usually limited by the oversimplification of natural and human-managed processes and insufficient representation of spatiotemporally varied hydrological and biogeochemical cycles in agricultural watersheds. In this study, we improved a spatially distributed process-based hydro-ecological model (DLEM-catchment) and applied the model to four tile-drained catchments with mixed agricultural management and diverse landscape in Iowa, Midwestern US. The quantitative statistics show that the improved model well reproduced the daily and monthly water discharge, NO3-N concentration and loading measured from 2015 to 2019 in all four catchments. The model estimation shows that subsurface flow (tile flow + lateral flow) dominates the discharge (70%-75%) and NO3-N loading (77%-82%) over the years. However, the contributions of tile drainage and lateral flow vary remarkably among catchments due to different tile-drained area percentages and the presence of farmed potholes (former depressional wetlands that have been drained for agricultural production). Furthermore, we found that agricultural management (e.g. tillage and fertilizer management) and catchment characteristics (e.g. soil properties, farmed potholes, and tile drainage) play important roles in predicting the spatial distributions of NO3-N leaching and loading. The simulated results reveal that the model improvements in representing water retention capacity (snow processes, soil roughness, and farmed potholes) and tile drainage improved model performance in estimating discharge and NO3-N export at a daily time step, while improvement of agricultural management mainly impacts NO3-N export prediction. This study underlines the necessity of characterizing catchment properties, agricultural management practices, flow-specific NO3-N movement, and spatial heterogeneity of NO3-N fluxes for accurately simulating water quality dynamics and predicting the impacts of agricultural conservation nutrient reduction strategies.more » « less
-
Abstract The Midwest of the USA is a highly productive agricultural region, in part due to the installation of perforated subsurface pipes, known as tile drains that remove excess water from wet soils. Tile drains rapidly move water to nearby streams, influencing how quickly streamflow rises and falls (i.e., streamflow “flashiness”). Currently, there are no comprehensive studies that compare the extent to which tile drainage influences flashiness across large and diverse agricultural regions. We address this knowledge gap by examining growing‐season (April–October) flashiness using the Richards‐Baker Index (RBI) in 139 watersheds located throughout the Midwest. Using a spatial tile‐drainage dataset, watersheds were split into low, medium, and high tile‐drainage classes. We found no significant differences between the flashiness of these three classes using a one‐way Kruskal–Wallis test. When watersheds were separated into infiltration groups to help control for different soil types, the high tile‐drainage class RBI was significantly higher than the low tile‐drainage class RBI in the high infiltration group. To further understand the causes of flashiness, additional environmental variables and their relationship to flashiness were examined using multivariate regression. In the low infiltration group, tile drainage significantly reduced flashiness, with watershed area and average depth to water table being the largest influences on flashiness. Tile drainage produced a larger reduction in flashiness in the high infiltration watersheds, with the largest influences being percent clay in the watershed and watershed area. These results indicate that the influence of tile drainage on flashiness emerges only after other watershed variables are accounted for. Given that tile drainage may increase in the future as precipitation patterns and extremes change, flashiness will likely continue to be modified. These results lead to an improved understanding of flood‐generating and nutrient transport mechanisms that are relevant to stakeholders across a wide range of sectors.
-
Abstract Understanding the dominant drivers of hydrological change is essential for water resources management. Watersheds in the United States are experiencing different types of changes (e.g., wet gets wetter and dry gets drier); however, few studies have analyzed what drivers are responsible for these changes, and how the dominant drivers vary over time and as a function of the climate/water regime and land cover. This study uses a time‐varying Budyko framework to quantify the relative importance of precipitation, potential evapotranspiration, and other factors (e.g., climate seasonality, agricultural drainage, and urbanization) in 889 watersheds in the contiguous United States from 1950 to 2009. Results show that watersheds that are getting wetter are primarily due to increases in precipitation. However, watersheds in dry climates that are getting drier are primarily due to other factors, while watersheds in wet climates that are getting drier are primarily due to precipitation. The drivers causing statistically significant streamflow trends vary depending on dominant land‐use types. Temporally, the increasing effects of other factors are more pronounced after the 1980s in the Midwest. The dominant drivers of streamflow in the United States are time‐varying instead of constant. This is consistent with non‐stationary patterns of streamflow. The time‐varying drivers provide information on the processes that are increasingly important and require the most attention in water resources management.