skip to main content


Title: Mapping of 30-meter resolution tile-drained croplands using a geospatial modeling approach
Abstract

Tile drainage is one of the dominant agricultural management practices in the United States and has greatly expanded since the late 1990s. It has proven effects on land surface water balance and quantity and quality of streamflow at the local scale. The effect of tile drainage on crop production, hydrology, and the environment on a regional scale is elusive due to lack of high-resolution, spatially-explicit tile drainage area information for the Contiguous United States (CONUS). We developed a 30-m resolution tile drainage map of the most-likely tile-drained area of the CONUS (AgTile-US) from county-level tile drainage census using a geospatial model that uses soil drainage information and topographic slope as inputs. Validation of AgTile-US with 16000 ground truth points indicated 86.03% accuracy at the CONUS-scale. Over the heavily tile-drained midwestern regions of the U.S., the accuracy ranges from 82.7% to 93.6%. These data can be used to study and model the hydrologic and water quality responses of tile drainage and to enhance streamflow forecasting in tile drainage dominant regions.

 
more » « less
Award ID(s):
1739705
NSF-PAR ID:
10181145
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Data
Volume:
7
Issue:
1
ISSN:
2052-4463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Subsurface tile drainage (TD) is a dominant agriculture water management practice in the United States (US) to enhance crop production in poorly drained soils. Assessments of field‐level or watershed‐level (<50 km2) hydrologic impacts of TD are becoming common; however, a major gap exists in our understanding of regional (>105 km2) impacts of TD on hydrology. The National Water Model (NWM) is a distributed 1‐km resolution hydrological model designed to provide accurate streamflow forecasts at 2.7 million reaches across the US. The current NWM lacks TD representation which adds considerable uncertainty to streamflow forecasts in heavily tile‐drained areas. In this study, we quantify the performance of the NWM with a newly incorporated tile‐drainage scheme over the heavily tile‐drained Midwestern US. Employing a TD scheme enhanced the uncalibrated NWM performance by about 20–50% of the fully calibrated NWM (Calib). The calibrated NWM with tile drainage (CalibTD) showed enhanced accuracy with higher event hit rates and lower false alarm rates thanCalib.CalibTDshowed better performance in high‐flow estimations as TD increased streamflow peaks (14%), volume (2.3%), and baseflow (11%). Regional water balance analysis indicated that TD significantly reduced surface runoff (−7% to −29%), groundwater recharge (−43% to −50%), evapotranspiration (−7% to −13%), and soil moisture content (−2% to −3%). However, TD significantly increased soil profile lateral flow (27.7%) along with infiltration and soil water storage potential. Overall, our findings highlight the importance of incorporating the TD process into the operational configuration of the NWM.

     
    more » « less
  2. Complete transformations of land cover from prairie, wetlands, and hardwood forests to row crop agriculture and urban centers are thought to have caused profound changes in hydrology in the Upper Midwestern US since the 1800s. In this study, we investigate four large (23 000–69 000 km2) Midwest river basins that span climate and land use gradients to understand how climate and agricultural drainage have influenced basin hydrology over the last 79 years. We use daily, monthly, and annual flow metrics to document streamflow changes and discuss those changes in the context of precipitation and land use changes. Since 1935, flow, precipitation, artificial drainage extent, and corn and soybean acreage have increased across the region. In extensively drained basins, we observe 2 to 4 fold increases in low flows and 1.5 to 3 fold increases in high and extreme flows. Using a water budget, we determined that the storage term has decreased in intensively drained and cultivated basins by 30–200 % since 1975, but increased by roughly 30 % in the less agricultural basin. Storage has generally decreased during spring and summer months and increased during fall and winter months in all watersheds. Thus, the loss of storage and enhanced hydrologic connectivity and efficiency imparted by artificial agricultural drainage appear to have amplified the streamflow response to precipitation increases in the Midwest. Future increases in precipitation are likely to further intensify drainage practices and increase streamflows. Increased streamflow has implications for flood risk, channel adjustment, and sediment and nutrient transport and presents unique challenges for agriculture and water resource management in the Midwest. Better documentation of existing and future drain tile and ditch installation is needed to further understand the role of climate versus drainage across multiple spatial and temporal scales. 
    more » « less
  3. Abstract

    The Midwest of the USA is a highly productive agricultural region, in part due to the installation of perforated subsurface pipes, known as tile drains that remove excess water from wet soils. Tile drains rapidly move water to nearby streams, influencing how quickly streamflow rises and falls (i.e., streamflow “flashiness”). Currently, there are no comprehensive studies that compare the extent to which tile drainage influences flashiness across large and diverse agricultural regions. We address this knowledge gap by examining growing‐season (April–October) flashiness using the Richards‐Baker Index (RBI) in 139 watersheds located throughout the Midwest. Using a spatial tile‐drainage dataset, watersheds were split into low, medium, and high tile‐drainage classes. We found no significant differences between the flashiness of these three classes using a one‐way Kruskal–Wallis test. When watersheds were separated into infiltration groups to help control for different soil types, the high tile‐drainage class RBI was significantly higher than the low tile‐drainage class RBI in the high infiltration group. To further understand the causes of flashiness, additional environmental variables and their relationship to flashiness were examined using multivariate regression. In the low infiltration group, tile drainage significantly reduced flashiness, with watershed area and average depth to water table being the largest influences on flashiness. Tile drainage produced a larger reduction in flashiness in the high infiltration watersheds, with the largest influences being percent clay in the watershed and watershed area. These results indicate that the influence of tile drainage on flashiness emerges only after other watershed variables are accounted for. Given that tile drainage may increase in the future as precipitation patterns and extremes change, flashiness will likely continue to be modified. These results lead to an improved understanding of flood‐generating and nutrient transport mechanisms that are relevant to stakeholders across a wide range of sectors.

     
    more » « less
  4. null (Ed.)
    Abstract. Topography is a fundamental input to hydrologic models criticalfor generating realistic streamflow networks as well as infiltration andgroundwater flow. Although there exist several national topographic datasetsfor the United States, they may not be compatible with gridded models thatrequire hydrologically consistent digital elevation models (DEMs). Here, wepresent a national topographic dataset developed to support griddedhydrologic simulations at 1 km and 250 m spatial resolution over the contiguousUnited States. The workflow is described step by step in two parts: (a) DEMprocessing using a Priority Flood algorithm to ensure hydrologicallyconsistent drainage networks and (b) slope calculation and smoothing toimprove drainage performance. The accuracy of the derived stream network isevaluated by comparing the derived drainage area to drainage areas reportedby the national stream gage network. The slope smoothing steps are evaluatedusing the runoff simulations with an integrated hydrologic model. Our DEMproduct started from the National Water Model DEM to ensure our finaldatasets will be as consistent as possible with this existing nationalframework. Our analysis shows that the additional processing we provideimproves the consistency of simulated drainage areas and the runoffsimulations that simulate gridded overland flow (as opposed to a networkrouting scheme). The workflow uses an open-source R package, and all outputdatasets and processing scripts are available and fully documented. All ofthe output datasets and scripts for processing are published through CyVerseat 250 m and 1 km resolution. The DOI link for the dataset is https://doi.org/10.25739/e1ps-qy48 (Zhang and Condon, 2020). 
    more » « less
  5. Abstract

    Understanding the dominant drivers of hydrological change is essential for water resources management. Watersheds in the United States are experiencing different types of changes (e.g., wet gets wetter and dry gets drier); however, few studies have analyzed what drivers are responsible for these changes, and how the dominant drivers vary over time and as a function of the climate/water regime and land cover. This study uses a time‐varying Budyko framework to quantify the relative importance of precipitation, potential evapotranspiration, and other factors (e.g., climate seasonality, agricultural drainage, and urbanization) in 889 watersheds in the contiguous United States from 1950 to 2009. Results show that watersheds that are getting wetter are primarily due to increases in precipitation. However, watersheds in dry climates that are getting drier are primarily due to other factors, while watersheds in wet climates that are getting drier are primarily due to precipitation. The drivers causing statistically significant streamflow trends vary depending on dominant land‐use types. Temporally, the increasing effects of other factors are more pronounced after the 1980s in the Midwest. The dominant drivers of streamflow in the United States are time‐varying instead of constant. This is consistent with non‐stationary patterns of streamflow. The time‐varying drivers provide information on the processes that are increasingly important and require the most attention in water resources management.

     
    more » « less