skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for stellar flares from low-mass stars using ASKAP and TESS
ABSTRACT Solar radio emission at low frequencies (<1 GHz) can provide valuable information on processes driving flares and coronal mass ejections (CMEs). Radio emission has been detected from active M dwarf stars, suggestive of much higher levels of activity than previously thought. Observations of active M dwarfs at low frequencies can provide information on the emission mechanism for high energy flares and possible stellar CMEs. Here, we conducted two observations with the Australian Square Kilometre Array Pathfinder Telescope totalling 26 h and scheduled to overlap with the Transiting Exoplanet Survey Satellite Sector 36 field, utilizing the wide fields of view of both telescopes to search for multiple M dwarfs. We detected variable radio emission in Stokes I centred at 888 MHz from four known active M dwarfs. Two of these sources were also detected with Stokes V circular polarization. When examining the detected radio emission characteristics, we were not able to distinguish between the models for either electron cyclotron maser or gyrosynchrotron emission. These detections add to the growing number of M dwarfs observed with variable low-frequency emission.  more » « less
Award ID(s):
1816492
PAR ID:
10370201
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 540-549
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Radio bursts from nearby active M-dwarfs have been frequently reported and extensively studied in solar or planetary paradigms. Whereas, their substructures or fine structures remain rarely explored despite their potential significance in diagnosing the plasma and magnetic field properties of the star. Such studies in the past have been limited by the sensitivity of radio telescopes. Here we report the inspiring results from the high time-resolution observations of a known flare star AD Leo with the Five-hundred-meter Aperture Spherical radio Telescope. We detected many radio bursts in the 2 days of observations with fine structures in the form of numerous millisecond-scale sub-bursts. Sub-bursts on the first day display stripe-like shapes with nearly uniform frequency drift rates, which are possibly stellar analogs to Jovian S-bursts. Sub-bursts on the second day, however, reveal a different blob-like shape with random occurrence patterns and are akin to solar radio spikes. The new observational results suggest that the intense emission from AD Leo is driven by electron cyclotron maser instability, which may be related to stellar flares or interactions with a planetary companion. 
    more » « less
  2. Abstract Though the time-domain millimeter sky is yet to be well characterized, the scarcity of millimeter observing resources in the world at present hampers progress toward it. In efforts to bolster the exploration of millimeter transients, we present the Stokes Polarization Radio Interferometer for Time-Domain Experiments (SPRITEly). Located at the Owens Valley Radio Observatory, SPRITEly is currently deployed as a two-element short-baseline 90 GHz interferometer uniquely focused on monitoring bright variable millimeter-continuum sources. We leverage two existing 10.4 m antennas and their existing receiver systems to begin, but we make significant upgrades to the back-end system during the commissioning process. With the ability to achieve rms noise of a few mJy, we plan to monitor known variable sources along with new nearby transients detected from optical surveys at high cadence, with the goal of producing well-sampled light curves. Interpreting these data in conjunction with multiwavelength observations stands to provide insight into the physical properties of the sources that produce transient millimeter emission. We present commissioning and early-science observations that demonstrate the performance of the instrument, including observations of the flaring BL Lac object S2 0109+22 and a periastron passage of the binary T Tauri system DQ Tau. 
    more » « less
  3. Abstract We present results from a search for radio emission in 77 stellar systems hosting 140 exoplanets, predominantly within 17.5 pc using the Very Large Array (VLA) at 4–8 GHz. This is the largest and most sensitive search to date for radio emission in exoplanetary systems in the GHz frequency range. We obtained new observations of 58 systems and analyzed archival observations of an additional 19 systems. Our choice of frequency and volume limit is motivated by radio detections of ultracool dwarfs (UCDs), including T dwarfs with masses at the exoplanet threshold of ∼13MJ. Our surveyed exoplanets span a mass range of ≈10−3–10MJand semimajor axes of ≈10−2–10 au. We detect a single target—GJ 3323 (M4) hosting two exoplanets with minimum masses of 2 and 2.3M—with a circular polarization fraction of ≈40%; the radio luminosity agrees with its known X-ray luminosity and the Güdel–Benz relation for stellar activity suggesting a likely stellar origin, but the high circular polarization fraction may also be indicative of star–planet interaction. For the remaining sources our 3σupper limits are generallyLν≲ 1012.5erg s−1Hz−1, comparable to the lowest radio luminosities in UCDs. Our results are consistent with previous targeted searches of individual systems at GHz frequencies while greatly expanding the sample size. Our sensitivity is comparable to predicted fluxes for some systems considered candidates for detectable star–planet interaction. Observations with future instruments such as the Square Kilometre Array and Next-Generation VLA will be necessary to further constrain emission mechanisms from exoplanet systems at GHz frequencies. 
    more » « less
  4. Abstract The dynamic structures of solar filaments prior to solar flares provide important physical clues about the onset of solar eruptions. Observations of those structures under subarcsecond resolution with high cadence are rare. We present high-resolution observations covering preeruptive and eruptive phases of two C-class solar flares, C5.1 (SOL2022-11-14T17:29) and C5.1 (SOL2022-11-14T19:29), obtained by the Goode Solar Telescope at Big Bear Solar Observatory. Both flares are ejective, i.e., accompanied by coronal mass ejections (CMEs). High-resolution Hαobservations reveal details of the flares and some striking features, such as a filament peeling process: individual strands of thin flux tubes are separated from the main filament, followed shortly thereafter by a flare. The estimated flux of rising strands is in the order of 1017Mx, versus the 1019Mx of the entire filament. Our new finding may explain why photospheric magnetic fields and overall active region and filament structures as a whole do not have obvious changes after a flare, and why some CMEs have been traced back to the solar active regions with only nonerupting filaments, as the magnetic reconnection may only involve a very small amount of flux in the active region, requiring no significant filament eruptions. We suggest internal reconnection between filament threads, instead of reconnection to external loops, as the process responsible for triggering this peeling of threads that results in the two flares and their subsequent CMEs. 
    more » « less
  5. ABSTRACT Radio emission has been detected from tens of white dwarfs, in particular in accreting systems. Additionally, radio emission has been predicted as a possible outcome of a planetary system around a white dwarf. We searched for 3 GHz radio continuum emission in 846 000 candidate white dwarfs previously identified in Gaia using the Very Large Array Sky Survey (VLASS) Epoch 1 Quick Look Catalogue. We identified 13 candidate white dwarfs with a counterpart in VLASS within 2 arcsec. Five of those were found not to be white dwarfs in follow-up or archival spectroscopy, whereas seven others were found to be chance alignments with a background source in higher resolution optical or radio images. The remaining source, WDJ204259.71+152108.06, is found to be a white dwarf and M-dwarf binary with an orbital period of 4.1 d and long-term stochastic optical variability, as well as luminous radio and X-ray emission. For this binary, we find no direct evidence of a background contaminant, and a chance alignment probability of only ≈2 per cent. However, other evidence points to the possibility of an unfortunate chance alignment with a background radio and X-ray emitting quasar, including an unusually poor Gaia DR3 astrometric solution for this source. With at most one possible radio emitting white dwarf found, we conclude that strong (≳1–3 mJy) radio emission from white dwarfs in the 3 GHz band is virtually non-existent outside of interacting binaries. 
    more » « less