Abstract Observing magnetic star–planet interactions (SPIs) offers promise for determining the magnetic fields of exoplanets. Models of sub-Alfvénic SPIs predict that terrestrial planets in close-in orbits around M dwarfs can induce detectable stellar radio emission, manifesting as bursts of strongly polarized coherent radiation observable at specific planet orbital positions. Here we present 2–4 GHz detections of coherent radio bursts on the slowly rotating M dwarf YZ Ceti, which hosts a compact system of terrestrial planets, the innermost of which orbits with a two-day period. Two coherent bursts occur at similar orbital phases of YZ Ceti b, suggestive of an enhanced probability of bursts near that orbital phase. We model the system’s magnetospheric environment in the context of sub-Alfvénic SPIs and determine that YZ Ceti b can plausibly power the observed flux densities of the radio detections. However, we cannot rule out stellar magnetic activity without a well-characterized rate of non-planet-induced coherent radio bursts on slow rotators. YZ Ceti is therefore a candidate radio SPI system, with unique promise as a target for long-term monitoring.
more »
« less
Fine Structures of Radio Bursts from Flare Star AD Leo with FAST Observations
Abstract Radio bursts from nearby active M-dwarfs have been frequently reported and extensively studied in solar or planetary paradigms. Whereas, their substructures or fine structures remain rarely explored despite their potential significance in diagnosing the plasma and magnetic field properties of the star. Such studies in the past have been limited by the sensitivity of radio telescopes. Here we report the inspiring results from the high time-resolution observations of a known flare star AD Leo with the Five-hundred-meter Aperture Spherical radio Telescope. We detected many radio bursts in the 2 days of observations with fine structures in the form of numerous millisecond-scale sub-bursts. Sub-bursts on the first day display stripe-like shapes with nearly uniform frequency drift rates, which are possibly stellar analogs to Jovian S-bursts. Sub-bursts on the second day, however, reveal a different blob-like shape with random occurrence patterns and are akin to solar radio spikes. The new observational results suggest that the intense emission from AD Leo is driven by electron cyclotron maser instability, which may be related to stellar flares or interactions with a planetary companion.
more »
« less
- Award ID(s):
- 1654382
- PAR ID:
- 10504496
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 953
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 65
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Decameter hectometric (DH; 1–14 MHz) type IV radio bursts are produced by flare-accelerated electrons trapped in postflare loops or the moving magnetic structures associated with the coronal mass ejections (CMEs). From a space weather perspective, it is important to systematically compile these bursts, explore their spectrotemporal characteristics, and study the associated CMEs. We present a comprehensive catalog of DH type IV bursts observed by the Radio and Plasma Wave Investigation instruments on board the Wind and Solar TErrestrial RElations Observatory spacecraft covering the period of white-light CME observations by the Large Angle and Spectrometric Coronagraph on board the Solar and Heliospheric Observatory mission between 1996 November and 2023 May. The catalog has 139 bursts, of which 73% are associated with a fast (>900 km s−1) and wide (>60°) CME, with a mean CME speed of 1301 km s−1. All DH type IV bursts are white-light CME-associated, with 78% of the events associated with halo CMEs. The CME source latitudes are within ±45°. Seventy-seven events had multiple-vantage-point observations from different spacecraft, letting us explore the impact of the line of sight on the dynamic spectra. For 48 of the 77 events, there were good data from at least two spacecraft. We find that, unless occulted by nearby plasma structures, a type IV burst is best viewed when observed within a ±60° line of sight. Also, bursts with a duration above 120 minutes have source longitudes within ±60°. Our inferences confirm the inherent directivity in the type IV emission. Additionally, the catalog forms a Sun-as-a-star DH type IV burst database.more » « less
-
Abstract We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3M⊙yr−1but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels.more » « less
-
null (Ed.)Context. Coronal mass ejections (CMEs) are large eruptions of magnetised plasma from the Sun that are often accompanied by solar radio bursts produced by accelerated electrons. Aims. A powerful source for accelerating electron beams are CME-driven shocks, however, there are other mechanisms capable of accelerating electrons during a CME eruption. So far, studies have relied on the traditional classification of solar radio bursts into five groups (Type I–V) based mainly on their shapes and characteristics in dynamic spectra. Here, we aim to determine the origin of moving radio bursts associated with a CME that do not fit into the present classification of the solar radio emission. Methods. By using radio imaging from the Nançay Radioheliograph, combined with observations from the Solar Dynamics Observatory, Solar and Heliospheric Observatory, and Solar Terrestrial Relations Observatory spacecraft, we investigate the moving radio bursts accompanying two subsequent CMEs on 22 May 2013. We use three-dimensional reconstructions of the two associated CME eruptions to show the possible origin of the observed radio emission. Results. We identified three moving radio bursts at unusually high altitudes in the corona that are located at the northern CME flank and move outwards synchronously with the CME. The radio bursts correspond to fine-structured emission in dynamic spectra with durations of ∼1 s, and they may show forward or reverse frequency drifts. Since the CME expands closely following an earlier CME, a low coronal CME–CME interaction is likely responsible for the observed radio emission. Conclusions. For the first time, we report the existence of new types of short duration bursts, which are signatures of electron beams accelerated at the CME flank. Two subsequent CMEs originating from the same region and propagating in similar directions provide a complex configuration of the ambient magnetic field and favourable conditions for the creation of collapsing magnetic traps. These traps are formed if a CME-driven wave, such as a shock wave, is likely to intersect surrounding magnetic field lines twice. Electrons will thus be further accelerated at the mirror points created at these intersections and eventually escape to produce bursts of plasma emission with forward and reverse drifts.more » « less
-
olar elemental abundances, or solar system elemental abundances refer to the complement of chemical elements in the entire solar system. The sun contains more than 99-percent of the mass in the solar system and therefore the composition of the sun is a good proxy for the composition of the overall solar system. The solar system composition can be taken as the overall composition of the molecular cloud within the interstellar medium from which the solar system formed 4.567 billion years ago. Active research areas in astronomy and cosmochemistry model collapse of a molecular cloud of solar composition into a star with a planetary system, and the physical and chemical fractionation of the elements during planetary formation and differentiation. The solar system composition is the initial composition from which all solar system objects (the sun, terrestrial planets, gas giant planets, planetary satellites and moons, asteroids, Kuiper-belt objects, and comets) were derived. Other dwarf stars (with hydrostatic Hydrogen-burning in their cores) like our Sun (type G2V dwarf star) within the solar neighborhood have compositions similar to our Sun and the solar system composition. In general, differential comparisons of stellar compositions provide insights about stellar evolution as functions of stellar mass and age, and ongoing nucleosynthesis; but also about galactic chemical evolution when elemental compositions of stellar populations across our Milky Way Galaxy is considered. Comparisons to solar composition can reveal element destruction (e.g., Li) in the sun and in other dwarf stars. The comparisons also show element production of e.g., C, N, O, and the heavy elements made by the s-process in low- to intermediate mass stars (3-7 solar masses) after these evolved from their dwarf-star stage into red giant stars (where hydrogen and helium burning can occur in shells around their cores). The solar system abundances are and have been a critical test composition for nucleosynthesis models and models of Galactic chemical evolution, which aim ultimately to track the production of the elements heavier than hydrogen and helium in the generation of stars that came forth after the Big Bang 13.4 billion years ago. Article at: https://oxfordre.com/planetaryscience/view/10.1093/acrefore/9780190647926.001.0001/acrefore-9780190647926-e-145more » « less
An official website of the United States government

