skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High‐Efficiency Magnon‐Mediated Magnetization Switching in All‐Oxide Heterostructures with Perpendicular Magnetic Anisotropy
Abstract The search for efficient approaches to realize local switching of magnetic moments in spintronic devices has attracted extensive attention. One of the most promising approaches is the electrical manipulation of magnetization through electron‐mediated spin torque. However, the Joule heat generated via electron motion unavoidably causes substantial energy dissipation and potential damage to spintronic devices. Here, all‐oxide heterostructures of SrRuO3/NiO/SrIrO3are epitaxially grown on SrTiO3single‐crystal substrates following the order of the ferromagnetic transition metal oxide SrRuO3with perpendicular magnetic anisotropy, insulating and antiferromagnetic NiO, and metallic transition metal oxide SrIrO3with strong spin–orbit coupling. It is demonstrated that instead of the electron spin torques, the magnon torques present in the antiferromagnetic NiO layer can directly manipulate the perpendicular magnetization of the ferromagnetic layer. This magnon mechanism may significantly reduce the electron motion‐related energy dissipation from electron‐mediated spin currents. Interestingly, the threshold current density to generate a sufficient magnon current to manipulate the magnetization is one order of magnitude smaller than that in conventional metallic systems. These findings suggest a route for developing highly efficient all‐oxide spintronic devices operated by magnon current.  more » « less
Award ID(s):
2005108
PAR ID:
10370206
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
34
Issue:
34
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Controlling magnetization dynamics is imperative for developing ultrafast spintronics and tunable microwave devices. However, the previous research has demonstrated limited electric-field modulation of the effective magnetic damping, a parameter that governs the magnetization dynamics. Here, we propose an approach to manipulate the damping by using the large damping enhancement induced by the two-magnon scattering and a nonlocal spin relaxation process in which spin currents are resonantly transported from antiferromagnetic domains to ferromagnetic matrix in a mixed-phased metallic alloy FeRh. This damping enhancement in FeRh is sensitive to its fraction of antiferromagnetic and ferromagnetic phases, which can be dynamically tuned by electric fields through a strain-mediated magnetoelectric coupling. In a heterostructure of FeRh and piezoelectric PMN-PT, we demonstrated a more than 120% modulation of the effective damping by electric fields during the antiferromagnetic-to-ferromagnetic phase transition. Our results demonstrate an efficient approach to controlling the magnetization dynamics, thus enabling low-power tunable electronics. 
    more » « less
  2. Abstract Spin–orbit torques generated by a spin current are key to magnetic switching in spintronic applications. The polarization of the spin current dictates the direction of switching required for energy‐efficient devices. Conventionally, the polarizations of these spin currents are restricted to be along a certain direction due to the symmetry of the material allowing only for efficient in‐plane magnetic switching. Unconventional spin–orbit torques arising from novel spin current polarizations, however, have the potential to switch other magnetization orientations such as perpendicular magnetic anisotropy, which is desired for higher density spintronic‐based memory devices. Here, it is demonstrated that low crystalline symmetry is not required for unconventional spin–orbit torques and can be generated in a nonmagnetic high symmetry material, iridium dioxide (IrO2), using epitaxial design. It is shown that by reducing the relative crystalline symmetry with respect to the growth direction large unconventional spin currents can be generated and hence spin–orbit torques. Furthermore, the spin polarizations detected in (001), (110), and (111) oriented IrO2thin films are compared to show which crystal symmetries restrict unconventional spin transport. Understanding and tuning unconventional spin transport generation in high symmetry materials can provide a new route towards energy‐efficient magnetic switching in spintronic devices. 
    more » « less
  3. The wider application of spintronic devices requires the development of new material platforms that can efficiently manipulate spin. Bismuthate-based superconductors are centrosymmetric systems that are generally thought to offer weak spin–orbit coupling. Here, we report a large spin–orbit torque driven by spin polarization generated in heterostructures based on the bismuthate BaPb1-xBixO3 (which is in a non-superconducting state). Using spin-torque ferromagnetic resonance and d.c. non-linear Hall measurements, we measure a spin–orbit torque efficiency of around 2.7 and demonstrate current driven magnetization switching at current densities of 4×10^5 A〖cm〗^(-2). We suggest that the unexpectedly large current-induced torques could be the result of an orbital Rashba effect associated with local inversion symmetry breaking in BaPb1-xBixO3. 
    more » « less
  4. Antiferromagnetic insulators present a promising alternative to ferromagnets due to their ultrafast spin dynamics essential for low-energy terahertz spintronic device applications. Magnons, i.e., quantized spin waves capable of transmitting information through excitations, serve as a key functional element in this paradigm. However, identifying external mechanisms to effectively tune magnon properties has remained a major challenge. Here we demonstrate that interfacial metal-insulator transitions offer an effective method for controlling the magnons of Sr2IrO4, a strongly spin-orbit coupled antiferromagnetic Mott insulator. Resonant inelastic x-ray scattering experiments reveal a significant softening of zone-boundary magnon energies in Sr2IrO4 films epitaxially interfaced with metallic 4d transition-metal oxides. Therefore, the magnon dispersion of Sr2IrO4 can be tuned by metal-insulator transitions of the 4d transition-metal oxides. We tentatively attribute this non-trivial behavior to a long-range phenomenon mediated by magnon-acoustic phonon interactions. Our experimental findings introduce a strategy for controlling magnons and underscore the need for further theoretical studies to better understand the underlying microscopic interactions between magnons and phonons. 
    more » « less
  5. Abstract Unidirectional magnetoresistance (UMR) has been observed in a variety of stacks with ferromagnetic/spin Hall material bilayer structures. In this work, UMR in antiferromagnetic insulator Fe2O3/Pt structure is reported. The UMR has a negative value, which is related to interfacial Rashba coupling and band splitting. Thickness‐dependent measurement reveals a potential competition between UMR and the unidirectional spin Hall magnetoresistance (USMR). This work reveals the existence of UMR in antiferromagnetic insulators/heavy metal bilayers and broadens the way for the application of antiferromagnet‐based spintronic devices. 
    more » « less