Abstract We examined microbial succession along a glacier forefront in the Antarctic Peninsula representing ∼30 years of deglaciation to contrast bacterial and eukaryotic successional dynamics and abiotic drivers of community assembly using sequencing and soil properties. Microbial communities changed most rapidly early along the chronosequence, and co-occurrence network analysis showed the most complex topology at the earliest stage. Initial microbial communities were dominated by microorganisms derived from the glacial environment, whereas later stages hosted a mixed community of taxa associated with soils. Eukaryotes became increasingly dominated by Cercozoa, particularly Vampyrellidae, indicating a previously unappreciated role for cercozoan predators during early stages of primary succession. Chlorophytes and Charophytes (rather than cyanobacteria) were the dominant primary producers and there was a spatio-temporal sequence in which major groups became abundant succeeding from simple ice Chlorophytes to Ochrophytes and Bryophytes. Time since deglaciation and pH were the main abiotic drivers structuring both bacterial and eukaryotic communities. Determinism was the dominant assembly mechanism for Bacteria, while the balance between stochastic/deterministic processes in eukaryotes varied along the distance from the glacier front. This study provides new insights into the unexpected dynamic changes and interactions across multiple trophic groups during primary succession in a rapidly changing polar ecosystem.
more »
« less
Primary Microbial Succession in the Anchialine Ecosystem
Synopsis When new land is created, initial microbial colonization lays the foundation for further ecological succession of plant and animal communities. Primary microbial succession of new aquatic habitats formed during volcanic activity has received little attention. The anchialine ecosystem, which includes coastal ponds in young lava flows, offers an opportunity to examine this process. Here, we characterized microbial communities of anchialine habitats in Hawaii that were created during volcanic eruptions in 2018. Benthic samples from three habitats were collected ∼2 years after their formation and at later time points spanning ∼1 year. Sequence profiling (16S and 18S) of prokaryotic and eukaryotic communities was used to test whether communities were similar to those from older, established anchialine habitats, and if community structure changed over time. Results show that microbial communities from the new habitats were unlike any from established anchialine microbial communities, having higher proportions of Planctomycetota and Chloroflexi but lower proportions of green algae. Each new habitat also harbored its own unique community relative to other habitats. While community composition in each habitat underwent statistically significant changes over time, they remained distinctive from established anchialine habitats. New habitats also had highly elevated temperatures compared to other habitats. These results suggest that idiosyncratic microbial consortia form during early succession of Hawaiian anchialine habitats. Future monitoring will reveal whether the early communities described here remain stable after temperatures decline and macro-organisms become more abundant, or if microbial communities will continue to change and eventually resemble those of established habitats. This work is a key first step in examining primary volcanic succession in aquatic habitats and suggests young anchialine habitats may warrant special conservation status.
more »
« less
- PAR ID:
- 10370210
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Integrative And Comparative Biology
- Volume:
- 62
- Issue:
- 2
- ISSN:
- 1540-7063
- Page Range / eLocation ID:
- p. 275-287
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Animals often shape environmental microbial communities, which can in turn influence animal gut microbiomes. Invasive species in critical habitats may reduce grazing pressure from native species and shift microbial communities. The landlocked coastal ponds, pools, and caves that make up the Hawaiian anchialine ecosystem support an endemic shrimp (Halocaridina rubra) that grazes on diverse benthic microbial communities, including orange cyanobacterial‐bacterial crusts and green algal mats. Here, we asked how shrimp: (1) shape the abundance and composition of microbial communities, (2) respond to invasive fishes, and (3) whether their gut microbiomes are affected by environmental microbial communities. We demonstrate that ecologically relevant levels of shrimp grazing significantly reduce epilithon biomass. Shrimp grazed readily and grew well on both orange crusts and green mat communities. However, individuals from orange crusts were larger, despite crusts having reduced concentrations of key fatty acids. DNA profiling revealed shrimp harbor a resident gut microbiome distinct from the environment, which is relatively simple and stable across space (including habitats with different microbial communities) and time (between wild‐caught individuals and those maintained in the laboratory for >2 yr). DNA profiling also suggests shrimp grazing alters environmental microbial community composition, possibly through selective consumption and/or physical interactions. While this work suggests grazing by endemic shrimp plays a key role in shaping microbial communities in the Hawaiian anchialine ecosystem, the hypothesized drastic ecological shifts resulting from invasive fishes may be an oversimplification as shrimp may largely avoid predation. Moreover, environmental microbial communities may have little influence on shrimp gut microbiomes.more » « less
-
Abstract Successional theory proposes that fast growing and well dispersed opportunistic species are the first to occupy available space. However, these pioneering species have relatively short life cycles and are eventually outcompeted by species that tend to be longer-lived and have lower dispersal capabilities. Using Autonomous Reef Monitoring Structures (ARMS) as standardized habitats, we examine the assembly and stages of ecological succession among sponge species with distinctive life history traits and physiologies found on cryptic coral reef habitats of Kāneʻohe Bay, Hawaiʻi. Sponge recruitment was monitored bimonthly over 2 years on ARMS deployed within a natural coral reef habitat resembling the surrounding climax community and on ARMS placed in unestablished mesocosms receiving unfiltered seawater directly from the natural reef deployment site. Fast growing haplosclerid and calcareous sponges initially recruited to and dominated the mesocosm ARMS. In contrast, only slow growing long-lived species initially recruited to the reef ARMS, suggesting that despite available space, the stage of ecological succession in the surrounding habitat influences sponge community development in uninhabited space. Sponge composition and diversity between early summer and winter months within mesocosm ARMS shifted significantly as the initially recruited short-lived calcareous and haplosclerid species initially recruit and then died off. The particulate organic carbon contribution of dead sponge tissue from this high degree of competition-free community turnover suggests a possible new component to the sponge loop hypothesis which remains to be tested among these pioneering species. This source of detritus could be significant in early community development of young coastal habitats but less so on established coral reefs where the community is dominated by long-lived colonial sponges.more » « less
-
null (Ed.)We examined the patterns of propagule recruitment to assess the timescale and trajectory of succession and the possible roles of physical factors in controlling benthic community structure in a shallow High Arctic kelp bed in the Beaufort Sea, Alaska. Spatial differences in established epilithic assemblages were evaluated against static habitat attributes (depth, distance from river inputs) and environmental factors (temperature, salinity, current speed, underwater light) collected continuously over 2–6 years. Our measurements revealed that bottom waters remained below freezing (mean winter temperatures ∼−1.8°C) and saline (33–36) with negligible light levels for 8–9 months. In contrast, the summer open water period was characterized by variable salinities (22–36), higher temperatures (up to 8–9°C) and measurable irradiance (1–8 mol photons m –2 day –1 ). An inshore, near-river site experienced strong, acute, springtime drops in salinity to nearly 0 in some years. The epilithic community was dominated by foliose red algae (47–79%), prostrate kelps (2–19%), and crustose coralline algae (0–19%). Strong spatial distinctions among sites included a positive correlation between cover by crustose coralline algae and distance to river inputs, but we found no significant relationships between multi-year means of physical factors and functional groups. Low rates of colonization and the very slow growth rates of recruits are the main factors that contribute to prolonged community development, which augments the influence of low-frequency physical events over local community structure. Mortality during early succession largely determines crustose coralline algal and invertebrate prevalence in the established community, while kelp seem to be recruitment-limited. On scales > 1 m, community structure varies with bathymetry and exposure to freshwater intrusion, which regulate frequency of primary and physiological disturbance. Colonization rates (means of 3.3–69.9 ind. 100 cm –1 year –1 site –1 ) were much lower than studies in other Arctic kelp habitats, and likely reflect the nature of a truly High Arctic environment. Our results suggest that community development in the nearshore Beaufort Sea occurs over decades, and is affected by combinations of recruitment limitation, primary disturbance, and abiotic stressors. While seasonality exerts strong influence on Arctic systems, static habitat characteristics largely determine benthic ecosystem structure by integrating seasonal and interannual variability over timescales longer than most ecological studies.more » « less
-
IntroductionThe 1980 eruption of Mount St. Helens had devastating effects above and belowground in forested montane ecosystems, including the burial and destruction of soil microbes. Soil microbial propagules and legacies in recovering ecosystems are important for determining post-disturbance successional trajectories. Soil microorganisms regulate nutrient cycling, interact with many other organisms, and therefore may support successional pathways and complementary ecosystem functions, even in harsh conditions. Historic forest management methods, such as old-growth and clearcut regimes, and locations of historic short-term gopher enclosures (Thomomys talpoides), to evaluate community response to forest management practices and to examine vectors for dispersing microbial consortia to the surface of the volcanic landscape. These biotic interactions may have primed ecological succession in the volcanic landscape, specifically Bear Meadow and the Pumice Plain, by creating microsite conditions conducive to primary succession and plant establishment. Methods and resultsUsing molecular techniques, we examined bacterial, fungal, and AMF communities to determine how these variables affected microbial communities and soil properties. We found that bacterial/archaeal 16S, fungal ITS2, and AMF SSU community composition varied among forestry practices and across sites with long-term lupine plots and gopher enclosures. The findings also related to detected differences in C and N concentrations and ratios in soil from our study sites. Fungal communities from previously clearcut locations were less diverse than in gopher plots within the Pumice Plain. Yet, clearcut meadows harbored fewer ancestral AM fungal taxa than were found within the old-growth forest. DiscussionBy investigating both forestry practices and mammals in microbial dispersal, we evaluated how these interactions may have promoted revegetation and ecological succession within the Pumice Plains of Mount St. Helens. In addition to providing evidence about how dispersal vectors and forest structure influence post-eruption soil microbiomes, this project also informs research and management communities about belowground processes and microbial functional traits in facilitating succession and ecosystem function.more » « less
An official website of the United States government
