skip to main content


Title: Different factors limit early‐ and late‐season windows of opportunity for monarch development
Abstract

Seasonal windows of opportunity are intervals within a year that provide improved prospects for growth, survival, or reproduction. However, few studies have sufficient temporal resolution to examine how multiple factors combine to constrain the seasonal timing and extent of developmental opportunities. Here, we document seasonal changes in milkweed (Asclepias fascicularis)–monarch (Danaus plexippus) interactions with high resolution throughout the last three breeding seasons prior to a precipitous single‐year decline in the western monarch population. Our results show early‐ and late‐season windows of opportunity for monarch recruitment that were constrained by different combinations of factors. Early‐season windows of opportunity were characterized by high egg densities and low survival on a select subset of host plants, consistent with the hypothesis that early‐spring migrant female monarchs select earlier‐emerging plants to balance a seasonal trade‐off between increasing host plant quantity and decreasing host plant quality. Late‐season windows of opportunity were coincident with the initiation of host plant senescence, and caterpillar success was negatively correlated with heatwave exposure, consistent with the hypothesis that late‐season windows were constrained by plant defense traits and thermal stress. Throughout this study, climatic and microclimatic variations played a foundational role in the timing and success of monarch developmental windows by affecting bottom‐up, top‐down, and abiotic limitations. More exposed microclimates were associated with higher developmental success during cooler conditions, and more shaded microclimates were associated with higher developmental success during warmer conditions, suggesting that habitat heterogeneity could buffer the effects of climatic variation. Together, these findings show an important dimension of seasonal change in milkweed–monarch interactions and illustrate how different biotic and abiotic factors can limit the developmental success of monarchs across the breeding season. These results also suggest the potential for seasonal sequences of favorable or unfavorable conditions across the breeding range to strongly affect monarch population dynamics.

 
more » « less
NSF-PAR ID:
10370220
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  more » ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;   « less
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
7
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Seasonal windows of opportunity represent intervals of time within a year during which organisms have improved prospects of achieving life history aims such as growth or reproduction, and may be commonly structured by temporal variation in abiotic factors, bottom‐up factors, and top‐down factors. Although seasonal windows of opportunity are likely to be common, few studies have examined the factors that structure seasonal windows of opportunity in time. Here, we experimentally manipulated host‐plant age in two milkweed species (Asclepias fascicularisandAsclepias speciosa) in order to investigate the role of plant‐species‐specific and plant‐age‐varying traits on the survival and growth of monarch caterpillars (Danaus plexippus). We show that the two plant species showed diverging trajectories of defense traits with increasing age. These species‐specific and age‐varying host‐plant traits significantly affected the growth and survival of monarch caterpillars through both resource quality‐ and quantity‐based constraints. The effects of plant age on monarch developmental success were comparable to and sometimes larger than those of plant‐species identity. We conclude that species‐specific and age‐varying plant traits are likely to be important factors with the potential to structure seasonal windows of opportunity for monarch development, and examine the implications of these findings for both broader patterns in the ontogeny of plant defense traits and the specific ecology of milkweed–monarch interactions in a changing world.

     
    more » « less
  2. Abstract

    Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.

    Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.

    Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.

    Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.

    Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend.

     
    more » « less
  3. null (Ed.)
    Declines in the abundance and diversity of insects pose a substantial threat to terrestrial ecosystems worldwide. Yet, identifying the causes of these declines has proved difficult, even for well-studied species like monarch butterflies, whose eastern North American population has decreased markedly over the last three decades. Three hypotheses have been proposed to explain the changes observed in the eastern monarch population: loss of milkweed host plants from increased herbicide use, mortality during autumn migration and/or early-winter resettlement and changes in breeding-season climate. Here, we use a hierarchical modelling approach, combining data from >18,000 systematic surveys to evaluate support for each of these hypotheses over a 25-yr period. Between 2004 and 2018, breeding-season weather was nearly seven times more important than other factors in explaining variation in summer population size, which was positively associated with the size of the subsequent overwintering population. Although data limitations prevent definitive evaluation of the factors governing population size between 1994 and 2003 (the period of the steepest monarch decline coinciding with a widespread increase in herbicide use), breeding-season weather was similarly identified as an important driver of monarch population size. If observed changes in spring and summer climate continue, portions of the current breeding range may become inhospitable for monarchs. Our results highlight the increasingly important contribution of a changing climate to insect declines. 
    more » « less
  4. Abstract

    Animals rely on a balance of endogenous and exogenous sources of immunity to mitigate parasite attack. Understanding how environmental context affects that balance is increasingly urgent under rapid environmental change. In herbivores, immunity is determined, in part, by phytochemistry which is plastic in response to environmental conditions. Monarch butterfliesDanaus plexippus, consistently experience infection by a virulent parasiteOphryocystis elektroscirrha, and some medicinal milkweed (Asclepias) species, with high concentrations of toxic steroids (cardenolides), provide a potent source of exogenous immunity.

    We investigated plant‐mediated influences of elevated CO2(eCO2) on endogenous immune responses of monarch larvae to infection byO. elektroscirrha. Recently, transcriptomics have revealed that infection byO. elektroscirrhadoes not alter monarch immune gene regulation in larvae, corroborating that monarchs rely more on exogenous than endogenous immunity. However, monarchs feeding on medicinal milkweed grown under eCO2lose tolerance to the parasite, associated with changes in phytochemistry. Whether changes in milkweed phytochemistry induced by eCO2alter the balance between exogenous and endogenous sources of immunity remains unknown.

    We fed monarchs two species of milkweed;A. curassavica(medicinal) andA. incarnata(non‐medicinal) grown under ambient CO2(aCO2) or eCO2. We then measured endogenous immune responses (phenoloxidase activity, haemocyte concentration and melanization strength), along with foliar chemistry, to assess mechanisms of monarch immunity under future atmospheric conditions.

    The melanization response of late‐instar larvae was reduced on medicinal milkweed in comparison to non‐medicinal milkweed. Moreover, the endogenous immune responses of early‐instar larvae to infection byO. elektroscirrhawere generally lower in larvae reared on foliage from aCO2plants and higher in larvae reared on foliage from eCO2plants. When grown under eCO2, milkweed plants exhibited lower cardenolide concentrations, lower phytochemical diversity and lower nutritional quality (higher C:N ratios). Together, these results suggest that the loss of exogenous immunity from foliage under eCO2results in increased endogenous immune function.

    Animal populations face multiple threats induced by anthropogenic environmental change. Our results suggest that shifts in the balance between exogenous and endogenous sources of immunity to parasite attack may represent an underappreciated consequence of environmental change.

     
    more » « less
  5. Abstract

    Few studies have described the effects of larval diet quality on adult insect flight performance. Flight muscle development and high‐powered flight in insects are associated with costly energetic demands. Because larval diet is the energy source that powers these mechanisms, we asked whether larval diet has an impact on flight performance and metabolism in the monarch butterfly (Danaus plexippusLinnaeus).

    Monarch caterpillars from the eastern North American and Puerto Rican populations were fed a diet of eitherAsclepias incarnataL. (native to the eastern North American population) orAsclepias curassavicaL. (native to the Puerto Rican population and uncommon in eastern North America). We flew the monarchs on a tethered flight mill to acquire flight performance metrics including velocity, distance, duration, power, and oxygen consumption rate.

    Monarchs reared on theA. incarnata L. milkweed showed slower, shorter, and less powerful flights than those fed onA. curassavicaL. However, eastern North American and Puerto Rican monarchs, which were reared under summer conditions, did not differ in flight metrics or post‐flight metabolic rates.

    The results suggest that flight in eastern North American and Puerto Rican monarchs is similar during the breeding season, yet the milkweed the caterpillars consume has important implications for flight performance.

     
    more » « less