skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changes in climate drive recent monarch butterfly dynamics
Declines in the abundance and diversity of insects pose a substantial threat to terrestrial ecosystems worldwide. Yet, identifying the causes of these declines has proved difficult, even for well-studied species like monarch butterflies, whose eastern North American population has decreased markedly over the last three decades. Three hypotheses have been proposed to explain the changes observed in the eastern monarch population: loss of milkweed host plants from increased herbicide use, mortality during autumn migration and/or early-winter resettlement and changes in breeding-season climate. Here, we use a hierarchical modelling approach, combining data from >18,000 systematic surveys to evaluate support for each of these hypotheses over a 25-yr period. Between 2004 and 2018, breeding-season weather was nearly seven times more important than other factors in explaining variation in summer population size, which was positively associated with the size of the subsequent overwintering population. Although data limitations prevent definitive evaluation of the factors governing population size between 1994 and 2003 (the period of the steepest monarch decline coinciding with a widespread increase in herbicide use), breeding-season weather was similarly identified as an important driver of monarch population size. If observed changes in spring and summer climate continue, portions of the current breeding range may become inhospitable for monarchs. Our results highlight the increasingly important contribution of a changing climate to insect declines.  more » « less
Award ID(s):
1702179 1702635 1954406
PAR ID:
10279886
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Ecology & Evolution
ISSN:
2397-334X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Environmental and anthropogenic factors affect the population dynamics of migratory species throughout their annual cycles. However, identifying the spatiotemporal drivers of migratory species' abundances is difficult because of extensive gaps in monitoring data. The collection of unstructured opportunistic data by volunteer (citizen science) networks provides a solution to address data gaps for locations and time periods during which structured, design‐based data are difficult or impossible to collect.To estimate population abundance and distribution at broad spatiotemporal extents, we developed an integrated model that incorporates unstructured data during time periods and spatial locations when structured data are unavailable. We validated our approach through simulations and then applied the framework to the eastern North American migratory population of monarch butterflies during their spring breeding period in eastern Texas. Spring climate conditions have been identified as a key driver of monarch population sizes during subsequent summer and winter periods. However, low monarch densities during the spring combined with very few design‐based surveys in the region have limited the ability to isolate effects of spring weather variables on monarchs.Simulation results confirmed the ability of our integrated model to accurately and precisely estimate abundance indices and the effects of covariates during locations and time periods in which structured sampling are lacking. In our case study, we combined opportunistic monarch observations during the spring migration and breeding period with structured data from the summer Midwestern breeding grounds. Our model revealed a nonstationary relationship between weather conditions and local monarch abundance during the spring, driven by spatially varying vegetation and temperature conditions.Data for widespread and migratory species are often fragmented across multiple monitoring programs, potentially requiring the use of both structured and unstructured data sources to obtain complete geographic coverage. Our integrated model can estimate population abundance at broad spatiotemporal extents despite structured data gaps during the annual cycle by leveraging opportunistic data. 
    more » « less
  2. Abstract Insect–pathogen dynamics can show seasonal and inter‐annual variations that covary with fluctuations in insect abundance and climate. Long‐term analyses are especially needed to track parasite dynamics in migratory insects, in part because their vast habitat ranges and high mobility might dampen local effects of density and climate on infection prevalence.Monarch butterfliesDanaus plexippusare commonly infected with the protozoanOphryocystis elektroscirrha(OE). Because this parasite lowers monarch survival and flight performance, and because migratory monarchs have experienced declines in recent decades, it is important to understand the patterns and drivers of infection.Here we compiled data onOEinfection spanning 50 years, from wild monarchs sampled in the United States, Canada and Mexico during summer breeding, fall migrating and overwintering periods. We examined eastern versus western North American monarchs separately, to ask how abundance estimates, resource availability, climate and breeding season length impact infection trends. We further assessed the intensity of migratory culling, which occurs when infected individuals are removed from the population during migration.Average infection prevalence was four times higher in western compared to eastern subpopulations. In eastern North America, the proportion of infected monarchs increased threefold since the mid‐2000s. In the western region, the proportion of infected monarchs declined sharply from 2000 to 2015, and increased thereafter. For both eastern and western subpopulations, years with greater summer adult abundance predicted greater infection prevalence, indicating that transmission increases with host breeding density. Environmental variables (temperature and NDVI) were not associated with changes in the proportion of infected adults. We found evidence for migratory culling of infected butterflies, based on declines in parasitism during fall migration. We estimated that tens of millions fewer monarchs reach overwintering sites in Mexico as a result ofOE, highlighting the need to consider the parasite as a potential threat to the monarch population.Increases in infection among eastern North American monarchs post‐2002 suggest that changes to the host’s ecology or environment have intensified parasite transmission. Further work is needed to examine the degree to which human practices, such as mass caterpillar rearing and the widespread planting of exotic milkweed, have contributed to this trend. 
    more » « less
  3. Monarch butterflies in eastern North America have declined by 84% on Mexican wintering grounds since the observed peak in 1996. However, coarse-scale population indices from northern US breeding grounds do not show a consistent downward trend. This discrepancy has led to speculation that autumn migration may be a critical limiting period. We address this hypothesis by examining the role of multiscale processes impacting monarchs during autumn, assessed using arrival abundances at all known winter colony sites over a 12-y period (2004–2015). We quantified effects of continental-scale (climate, landscape greenness, and disease) and local-scale (colony habitat quality) drivers of spatiotemporal trends in winter colony sizes. We also included effects of peak summer and migratory population indices. Our results demonstrate that higher summer abundance on northern breeding grounds led to larger winter colonies as did greener autumns, a proxy for increased nectar availability in southern US floral corridors. Colony sizes were also positively correlated with the amount of local dense forest cover and whether they were located within the Monarch Butterfly Biosphere Reserve, but were not influenced by disease rates. Although we demonstrate a demographic link between summer and fine-scale winter population sizes, we also reveal that conditions experienced during, and at the culmination of, autumn migration impact annual dynamics. Monarchs face a growing threat if floral resources and winter habitat availability diminish under climate change. Our study tackles a long-standing gap in the monarch’s annual cycle and highlights the importance of evaluating migratory conditions to understand mechanisms governing long-term population trends. 
    more » « less
  4. Abstract Global climate change is driving species' distributions towards the poles and mountain tops during both non‐breeding and breeding seasons, leading to changes in the composition of natural communities. However, the degree of season differences in climate‐driven community shifts has not been thoroughly investigated at large spatial scales.We compared the rates of change in the community composition during both winter (non‐breeding season) and summer (breeding) and their relation to temperature changes.Based on continental‐scale data from Europe and North America, we examined changes in bird community composition using the community temperature index (CTI) approach and compared the changes with observed regional temperature changes during 1980–2016.CTI increased faster in winter than in summer. This seasonal discrepancy is probably because individuals are less site‐faithful in winter, and can more readily shift their wintering sites in response to weather in comparison to the breeding season. Regional long‐term changes in community composition were positively associated with regional temperature changes during both seasons, but the pattern was only significant during summer due to high annual variability in winter communities. Annual changes in community composition were positively associated with the annual temperature changes during both seasons.Our results were broadly consistent across continents, suggesting some climate‐driven restructuring in both European and North American avian communities. Because community composition has changed much faster during the winter than during the breeding season, it is important to increase our knowledge about climate‐driven impacts during the less‐studied non‐breeding season. 
    more » « less
  5. Abstract Wetland bird species have been declining in population size worldwide as climate warming and land-use change affect their suitable habitats. We used species distribution models (SDMs) to predict changes in range dynamics for 64 non-passerine wetland birds breeding in Europe, including range size, position of centroid, and margins. We fitted the SDMs with data collected for the first European Breeding Bird Atlas and climate and land-use data to predict distributional changes over a century (the 1970s–2070s). The predicted annual changes were then compared to observed annual changes in range size and range centroid over a time period of 30 years using data from the second European Breeding Bird Atlas. Our models successfully predicted ca. 75% of the 64 bird species to contract their breeding range in the future, while the remaining species (mostly southerly breeding species) were predicted to expand their breeding ranges northward. The northern margins of southerly species and southern margins of northerly species, both, predicted to shift northward. Predicted changes in range size and shifts in range centroids were broadly positively associated with the observed changes, although some species deviated markedly from the predictions. The predicted average shift in core distributions was ca. 5 km yr −1 towards the north (5% northeast, 45% north, and 40% northwest), compared to a slower observed average shift of ca. 3.9 km yr −1 . Predicted changes in range centroids were generally larger than observed changes, which suggests that bird distribution changes may lag behind environmental changes leading to ‘climate debt’. We suggest that predictions of SDMs should be viewed as qualitative rather than quantitative outcomes, indicating that care should be taken concerning single species. Still, our results highlight the urgent need for management actions such as wetland creation and restoration to improve wetland birds’ resilience to the expected environmental changes in the future. 
    more » « less