skip to main content


Title: On the thermal structure of the proto-super star cluster 13 in NGC 253
ABSTRACT

Using high angular resolution ALMA observations (0.02 arcsec ≈ 0.34 pc), we study the thermal structure and kinematics of the proto-super star cluster 13 in the central region of NGC 253 through their continuum and vibrationally excited HC3N emission from J = 24−23 and J = 26−25 lines arising from vibrational states up to v4 = 1. We have carried 2D-LTE and non-local radiative transfer modelling of the radial profile of the HC3N and continuum emission in concentric rings of 0.1 pc width. From the 2D-LTE analysis, we found a Super Hot Core (SHC) of 1.5 pc with very high vibrational temperatures (>500 K), and a jump in the radial velocity (21 km s−1) in the SE-NW direction. From the non-local models, we derive the HC3N column density, H2 density, and dust temperature (Tdust) profiles. Our results show that the thermal structure of the SHC is dominated by the greenhouse effect due to the high dust opacity in the IR, leading to an overestimation of the LTE Tdust and its derived luminosity. The kinematics and Tdust profile of the SHC suggest that star formation was likely triggered by a cloud–cloud collision. We compare proto-SSC 13 to other deeply embedded star-forming regions, and discuss the origin of the $L_\text{IR}/M_{\text{H}_2}$ excess above ∼100 L⊙ M$_\odot ^{-1}$ observed in (U)LIRGs.

 
more » « less
NSF-PAR ID:
10370312
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
516
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1094-1113
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Using 0.2 arcsec (∼3 pc) ALMA images of vibrationally excited HC3N emission (HC3N*) we reveal the presence of eight unresolved Super Hot Cores (SHCs) in the inner 160 pc of NGC 253. Our LTE and non-LTE modelling of the HC3N* emission indicate that SHCs have dust temperatures of 200–375 K, relatively high H2 densities of (1−6) × 106 cm−3 and high IR luminosities of (0.1–1) × 108 L⊙. As expected from their short-lived phase (∼104 yr), all SHCs are associated with young super star clusters (SSCs). We use the ratio of luminosities from the SHCs (protostar phase) and from the free–free emission (ZAMS star phase), to establish the evolutionary stage of the SSCs. The youngest SSCs, with the larges ratios, have ages of a few 104 yr (proto-SSCs) and the more evolved SSCs are likely between 105 and 106 yr (ZAMS-SSCs). The different evolutionary stages of the SSCs are also supported by the radiative feedback from the UV radiation as traced by the HNCO/CS ratio, with this ratio being systematically higher in the young proto-SSCs than in the older ZAMS-SSCs. We also estimate the SFR and the SFE of the SSCs. The trend found in the estimated SFE ($\sim 40{{\ \rm per\ cent}}$ for proto-SSCs and $\gt 85{{\ \rm per\ cent}}$ for ZAMS-SSCs) and in the gas mass reservoir available for star formation, one order of magnitude higher for proto-SSCs, suggests that star formation is still going on in proto-SSCs. We also find that the most evolved SSCs are located, in projection, closer to the centre of the galaxy than the younger proto-SSCs, indicating an inside-out SSC formation scenario.

     
    more » « less
  2. ABSTRACT

    We have used ALMA imaging (resolutions 0.1–0.4 arcsec) of ground and vibrationally excited lines of HCN and HC3N toward the nucleus of NGC 4945 to trace the protostellar phase in super star clusters (proto-SSC). Out of the 14 identified SSCs, we find that eight are in the proto-SSC phase showing vibrational HCN emission with five of them also showing vibrational HC3N emission. We estimate proto-SSC ages of 5–9.7 × 104 yr. The more evolved ones, with only HCN emission, are close to reach the zero-age main sequence (ZAMS; ages ≳105 yr). The excitation of the parental cloud seems to be related to the SSC evolutionary stage, with high (∼65 K) and low (∼25 K) rotational temperatures for the youngest proto and ZAMS SSCs, respectively. Heating by the H ii regions in the SSC ZAMS phase seems to be rather local. The youngest proto-SSCs are located at the edges of the molecular outflow, indicating SSC formation by positive feedback in the shocked regions. The proto-SSCs in NGC 4945 seem to be more evolved than in the starburst galaxy NGC 253. We propose that sequential SSC formation can explain the spatial distribution and different ages of the SSCs in both galaxies.

     
    more » « less
  3. Carbon monoxide (CO) emission constitutes the most widely used tracer of the bulk molecular gas in the interstellar medium (ISM) in extragalactic studies. The CO-to-H 2 conversion factor, α 12 CO(1−0) , links the observed CO emission to the total molecular gas mass. However, no single prescription perfectly describes the variation of α 12 CO(1−0) across all environments within and across galaxies as a function of metallicity, molecular gas opacity, line excitation, and other factors. Using spectral line observations of CO and its isotopologues mapped across a nearby galaxy, we can constrain the molecular gas conditions and link them to a variation in α 12 CO(1−0) . Here, we present new, wide-field (10 × 10 arcmin 2 ) IRAM 30-m telescope 1 mm and 3 mm line observations of 12 CO, 13 CO, and C 18 O across the nearby, grand-design, spiral galaxy M101. From the CO isotopologue line ratio analysis alone, we find that selective nucleosynthesis and changes in the opacity are the main drivers of the variation in the line emission across the galaxy. In a further analysis step, we estimated α 12 CO(1−0) using different approaches, including (i) via the dust mass surface density derived from far-IR emission as an independent tracer of the total gas surface density and (ii) local thermal equilibrium (LTE) based measurements using the optically thin 13 CO(1–0) intensity. We find an average value of ⟨ α 12 CO(1 − 0) ⟩ = 4.4  ±  0.9  M ⊙  pc −2  (K km s −1 ) −1 across the disk of the galaxy, with a decrease by a factor of 10 toward the 2 kpc central region. In contrast, we find LTE-based α 12 CO(1−0) values are lower by a factor of 2–3 across the disk relative to the dust-based result. Accounting for α 12 CO(1−0) variations, we found significantly reduced molecular gas depletion time by a factor 10 in the galaxy’s center. In conclusion, our result suggests implications for commonly derived scaling relations, such as an underestimation of the slope of the Kennicutt Schmidt law, if α 12 CO(1−0) variations are not accounted for. 
    more » « less
  4. null (Ed.)
    Using VLTI/GRAVITY and SINFONI data, we investigate the subparsec gas and dust structure around the nearby type 1 active galactic nucleus (AGN) hosted by NGC 3783. The K -band coverage of GRAVITY uniquely allows simultaneous analysis of the size and kinematics of the broad line region (BLR), the size and structure of the near-infrared(near-IR)-continuum-emitting hot dust, and the size of the coronal line region (CLR). We find the BLR, probed through broad Br γ emission, to be well described by a rotating, thick disc with a radial distribution of clouds peaking in the inner region. In our BLR model, the physical mean radius of 16 light-days is nearly twice the ten-day time-lag that would be measured, which closely matches the ten-day time-lag that has been measured by reverberation mapping. We measure a hot dust full-width at half-maximum (FWHM) size of 0.74 mas (0.14 pc) and further reconstruct an image of the hot dust, which reveals a faint (5% of the total flux) offset cloud that we interpret as an accreting or outflowing cloud heated by the central AGN. Finally, we directly measure the FWHM size of the nuclear CLR as traced by the [Ca  VIII ] and narrow Br γ line. We find a FWHM size of 2.2 mas (0.4 pc), fully in line with the expectation of the CLR located between the BLR and narrow line region. Combining all of these measurements together with larger scale near-IR integral field unit and mid-IR interferometry data, we are able to comprehensively map the structure and dynamics of gas and dust from 0.01 to 100 pc. 
    more » « less
  5. Abstract

    The center of the nearby galaxy NGC 253 hosts a population of more than a dozen super star clusters (SSCs) that are still in the process of forming. The majority of the star formation of the burst is concentrated in these SSCs, and the starburst is powering a multiphase outflow from the galaxy. In this work, we measure the 350 GHz dust continuum emission toward the center of NGC 253 at 47 mas (0.8 pc) resolution using data from the Atacama Large Millimeter/submillimeter Array. We report the detection of 350 GHz (dust) continuum emission in the outflow for the first time, associated with the prominent South-West streamer. In this feature, the dust emission has a width of ≈8 pc, is located at the outer edge of the CO emission, and corresponds to a molecular gas mass of ∼(8–17)×106M. In the starburst nucleus, we measure the resolved radial profiles, sizes, and molecular gas masses of the SSCs. Compared to previous work at the somewhat lower spatial resolution, the SSCs here break apart into smaller substructures with radii 0.4–0.7 pc. In projection, the SSCs, dust, and dense molecular gas appear to be arranged as a thin, almost linear, structure roughly 155 pc in length. The morphology and kinematics of this structure can be well explained as gas followingx2orbits at the center of a barred potential. We constrain the morpho-kinematic arrangement of the SSCs themselves, finding that an elliptical, angular-momentum-conserving ring is a good description of both the morphology and kinematics of the SSCs.

     
    more » « less